1
|
Xiao X, Li Y, Zhang G, Gao Y, Kong Y, Liu
M and Tan Y: Detection of bacterial diversity in rat’s periodontal
disease model under imitational altitude hypoxia environment. Arch
Oral Biol. 57:23–29. 2012.
|
2
|
Yong Liu, Qin-Tao WANG, Gang Li, et al:
Epidemiological survey on periodontal healthy status of residents
in Highland. Endodontic Journal of Periodontology. 17:282–285.
2007.
|
3
|
Pichon A, Zhenzhong B, Favret F, et al:
Long-term ventilatory adaptation and ventilatory response to
hypoxia in plateau pika (Ochotona curzoniae): role of nNOS
and dopamine. Am J Physiol Regul Integr Comp Physiol.
297:R978–R987. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhou ZN, Zhuang JG, Wu XF, Zhang Y and
Cherdrungsi P: Tibetans retained innate ability resistance to acute
hypoxia after long period of residing at sea level. J Physiol Sci.
58:167–172. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lewis JS, Lee JA, Underwood JC, Harris AL
and Lewis CE: Macrophage responses to hypoxia: relevance to disease
mechanisms. J Leukoc Biol. 66:889–900. 1999.PubMed/NCBI
|
6
|
Park HJ, Baek KH, Lee HL, et al: Hypoxia
inducible factor-1α directly induces the expression of receptor
activator of nuclear factor-κB ligand in periodontal ligament
fibroblasts. Mol Cells. 31:573–578. 2011.
|
7
|
Amemiya H, Matsuzaka K, Kokubu E, Ohta S
and Inoue T: Cellular responses of rat periodontal ligament cells
under hypoxia and re-oxygenation conditions in vitro. J
Periodontal Res. 43:322–327. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Adegbembo AO, Adeyinka A, Danfillo IS, et
al: National pathfinder survey of periodontal status and treatment
needs in The Gambia. SADJ. 55:151–157. 2000.PubMed/NCBI
|
9
|
Desvarieux M, Demmer RT, Rundek T, et al:
Relationship between periodontal disease, tooth loss, and carotid
artery plaque: the Oral Infections and Vascular Disease
Epidemiology Study (INVEST). Stroke. 34:2120–2125. 2003. View Article : Google Scholar
|
10
|
Choe Y, Yu JY, Son YO, et al: Continuously
generated H2O2 stimulates the proliferation
and steoblastic differentiation of human periodontal ligament
fibroblasts. J Cell Biochem. 113:1426–1436. 2012.
|
11
|
Yu Y, Mu J, Fan Z, et al: Insulin-like
growth factor 1 enhances the proliferation and osteogenic
mineralization of human periodontal ligament stem cells via ERK and
JNK MAPK pathways. Histochem Cell Biol. 137:513–525. 2012.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Scheres N, Laine ML, Sipos PM, et al:
Periodontal ligament and gingival fibroblasts from periodontal
disease patients are more active in interaction with
Porphyromonas gingivalis. J Periodontal Res. 46:407–416.
2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chakravarthy MV, Spangenburg EE and Booth
FW: Culture in low levels of oxygen enhances in vitro proliferation
potential of satellite cells from old skeletal muscles. Cell Mol
Life Sc. 58:1150–1158. 2001. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhao T, Zhu LL, Zhao HQ, Li HS and Fan M:
Effects of hypoxia on the proliferation of rat myoblast in vitro.
In: Proceedings of 5th congress of Chinese society for
neuroscience; pp. 2902003
|
15
|
Yun Z, Lin Q and Giaccia AJ: Adaptive
myogenesis under hypoxia. Mol Cell Biol. 25:3040–3055. 2005.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Harada M, Itoh H, Nakagawa O, et al:
Significance of ventricular myocytes and nonmyocytes interaction
during cardiocyte hypertrophy: evidence for endothelin-1 as a
paracrine hypertrophic factor from cardiac nonmyocytes.
Circulation. 96:3737–3744. 1997. View Article : Google Scholar
|
17
|
Lennon DP, Edmison JM and Caplan AI:
Cultivation of rat marrow-derived mesenchymal stem cells in reduced
oxygen tension: effects on in vitro and in vivo
osteochondrogenesis. J Cell Physiol. 187:345–355. 2001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ren H, Cao Y, Zhao Q, et al: Proliferation
and mineralization of bone marrow stromal cells under hypoxic
conditions. Biochem Biophys Res Commun. 347:12–21. 2006. View Article : Google Scholar
|
19
|
Piret JP, Mottet D, Raes M and Michiels C:
Is HIF-1α a pro- or an anti-apoptotic protein? Biochem Pharmacol.
64:889–892. 2002.
|
20
|
Mylonis I, Sembongi H, Befani C, Liakos P,
Siniossoglou S and Simos G: Hypoxia causes triglyceride
accumulation via HIF-1-mediated stimulation of lipin 1 expression.
J Cell Sci. 125:3485–3493. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hisada T, Ayaori M, Ohrui N, et al: Statin
inhibits hypoxia-induced endothelin-1 via accelerated degradation
of HIF-1α in vascular smooth muscle cells. Cardiovasc Res.
95:251–259. 2012.PubMed/NCBI
|
22
|
Pae A, Kim SS, Kim HS and Woo YH:
Osteoblast-like cell attachment and proliferation on turned,
blasted, and anodized titanium surfaces. Int J Oral Maxillofac
Implants. 26:475–481. 2011.PubMed/NCBI
|
23
|
Utting JC, Robins SP, Brandao-Burch A,
Orriss IR, Behar J and Arnett TR: Hypoxia inhibits the growth,
differentiation and bone-forming capacity of rat osteoblasts. Exp
Cell Res. 312:1693–1702. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kawato Y, Hirao M and Ebina K:
Nkx3.2-induced suppression of Runx2 is a crucial mediator of
hypoxia-dependent maintenance of chondrocyte phenotypes. Biochem
Biophys Res Commun. 416:205–210. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ontiveros C, Irwin R, Wiseman RW and
McCabe LR: Hypoxia suppresses runx2 independent of modeled
microgravity. J Cell Physiol. 200:169–176. 2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zenebe WJ, Nazarewicz RR, Parihar MS and
Ghafourifar P: Hypoxia/reoxygenation of isolated rat heart
mitochondria causes cytochrome c release and oxidative stress;
evidence for involvement of mitochondrial nitric oxide synthase. J
Mol Cell Cardiol. 43:411–419. 2007. View Article : Google Scholar
|
27
|
Chen X, Sans MD, Strahler JR, et al:
Quantitative organellar proteomics analysis of rough endoplasmic
reticulum from normal and acute pancreatitis rat pancreas. J
Proteome Res. 9:885–902. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Walls KC, Ghosh AP, Franklin AV, et al:
Lysosome dysfunction triggers Atg7-dependent neural apoptosis. J
Biol Chem. 285:10497–10507. 2010. View Article : Google Scholar : PubMed/NCBI
|