Human papillomavirus oncoproteins and apoptosis (Review)
- Authors:
- Peiyue Jiang
- Ying Yue
-
Affiliations: Department of Gynecological Oncology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China - Published online on: October 30, 2013 https://doi.org/10.3892/etm.2013.1374
- Pages: 3-7
This article is mentioned in:
Abstract
![]() |
Nichols AC, Palma DA, Chow W, et al: High frequency of activating PIK3CA mutations in human papillomavirus-positive orpharyngeal cancer. JAMA Otolaryngol Head Neck Surg. 139:617–622. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yuan CH, Filippova M and Duerksen-Hughes P: Modulation of apoptotic pathways by human papillomaviruses (HPV): mechanisms and implications for therapy. Viruses. 4:3831–3850. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kaspersen MD, Larsen PB, Ingerslev HJ, et al: Identification of multiple HPV types on spermatozoa from human sperm donors. PLoS One. 6:e180952011. View Article : Google Scholar : PubMed/NCBI | |
Schlecht NF, Kulaga S, Robitaille J, et al: Persistent human papillomavirus infection as a predictor of cervical intraepithelial neoplasia. JAMA. 286:3106–3114. 2001. View Article : Google Scholar : PubMed/NCBI | |
Alam MS, Ali A, Mehdi SJ, et al: HPV typing and its relation with apoptosis in cervical carcinoma from Indian population. Tumor Biol. 33:17–22. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pisani P, Bray F and Parkin DM: Estimates of the world-wide prevalence of cancer for 25 sites in the adult population. Int J Cancer. 97:72–81. 2002. View Article : Google Scholar : PubMed/NCBI | |
zur Hausen H: Papillomaviruses in the causation of human cancers - a brief historical account. Virology. 384:260–265. 2009.PubMed/NCBI | |
Garnett TO and Duerksen-Hughes PJ: Modulation of apoptosis by human papillomavirus (HPV) oncoproteins. Arch Virol. 151:2321–2335. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mischo A, Ohlenschläger O, Hortschansky P, Ramachandran R and Görlach M: Structural insights into a wildtype domain of the oncoprotein E6 and its interaction with a PDZ domain. PLoS One. 8:e625842013. View Article : Google Scholar : PubMed/NCBI | |
Cai Q, Lv L, Shao Q, Li X and Dian A: Human papillomavirus early proteins and apoptosis. Arch Gynecol Obstet. 287:541–548. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mantovani F and Banks L: The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene. 20:7874–7887. 2001. View Article : Google Scholar : PubMed/NCBI | |
Nominé Y, Masson M, Charbonnier S, et al: Structural and functional analysis of E6 oncoprotein: insights in the molecular pathways of human papillomavirus-mediated pathogenesis. Mol Cell. 21:665–678. 2006.PubMed/NCBI | |
Ristriani T, Nominé Y, Masson M, Weiss E and Travé G: Specific recognition of four-way DNA junctions by the C-terminal zinc-binding domain of HPV oncoprotein E6. J Mol Biol. 305:729–739. 2001. View Article : Google Scholar : PubMed/NCBI | |
Huibregtse JM, Scheffner M and Howley PM: A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus type 16 or 18. EMBO J. 10:4129–4135. 1991.PubMed/NCBI | |
Scheffner M, Huibregtse JM, Vierstra RD and Howley PM: The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell. 75:495–505. 1993. View Article : Google Scholar : PubMed/NCBI | |
Murray-Zmijewski F, Slee EA and Lu X: A complex barcode underlies the heterogeneous response of p53 to stress. Nat Rev Mol Cell Biol. 9:702–712. 2008. View Article : Google Scholar : PubMed/NCBI | |
Howie HL, Katzenellenbogen RA and Galloway DA: Papillomavirus E6 proteins. Virology. 384:324–334. 2009. View Article : Google Scholar : PubMed/NCBI | |
Blanchette P and Branton PE: Manipulation of the ubiquitin-proteasome pathway by small DNA tumor virus. Virology. 384:317–323. 2009. View Article : Google Scholar : PubMed/NCBI | |
Khoronenkova SV and Dianov GL: The emerging role of Mule and ARF in the regulation of base exicision repair. FEBS Lett. 585:2831–2835. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kumar A, Zhao Y, Meng G, et al: Human papillomovirus oncoperotein E6 inactivates the transcriptional coactivator human ADA3. Mol Cell Biol. 22:5801–5812. 2002. View Article : Google Scholar : PubMed/NCBI | |
Aylon Y and Oren M: p53: guardian of ploidy. Mol Oncol. 5:315–323. 2011. View Article : Google Scholar : PubMed/NCBI | |
Contreras-Paredes A, De la Cruz-Hernández E, Martínez-Ramírez I, Dueñas-González A and Lizano M: E6 variants of human papillomavirus 18 differentially modulate the protein kinase B/phosphatidylinositol 3-kinase (akt/PI3K) signaling pathway. Virology. 383:78–85. 2009. View Article : Google Scholar : PubMed/NCBI | |
Underbrink MP, Howie HL, Bedard KM, Koop JI and Galloway DA: The E6 proteins from multiple human betapapillomavirus types degrade Bak and protect keratinocytes from apoptosis after UVB irradiation. J Virol. 82:10408–10417. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gewin L and Galloway DA: E box-dependent activation of telomerase by human papillomavirus type 16 E6 does not require induction of c-Myc. J Virol. 75:7198–7201. 2001. View Article : Google Scholar : PubMed/NCBI | |
Venuti A, Paolini F, Nasir L, et al: Papillomavirus E5: the smallest oncoprotein with many functions. Mol Cancer. 10:1402011. View Article : Google Scholar | |
Chang JL, Tsao YP, Liu DW, Huang SJ, Lee WH and Chen SL: The expression of HPV-16 E5 protein in squamous neoplastic changes in the uterine cervix. J Biomed Sci. 8:206–213. 2001. View Article : Google Scholar : PubMed/NCBI | |
Conrad M, Bubb VJ and Schlegel R: The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associated with the 16-kilodalton pore-forming protein. J Virol. 67:6170–6178. 1993.PubMed/NCBI | |
Borzacchiello G, Roperto F, Campo MS and Venuti A: 1st international workshop on papillomavirus E5 oncogene - a report. Virology. 408:135–137. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen SL and Mounts P: Transforming activity of E5a protein of human papillomavirus type 6 in NIH 3T3 and C127 cells. J Virol. 64:3226–3233. 1990.PubMed/NCBI | |
Hu L, Potapova TA, Li S, et al: Expression of HPV16 E5 produces enlarged nuclei and polyploidy through endoreplication. Virology. 405:342–351. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kabsch K and Alonso A: The human papillomavirus type 16 E5 protein impairs TRAIL- and FasL-mediated apoptosis in HaCaT cells by different mechanisms. J Virol. 76:12162–12172. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Shi Q, Xu K, et al: Familial CJD associated PrP mutants within transmembrane region induced Ctm-PrP retention in ER and triggered apoptosis by ER stress in SH-SY5Y cells. PLoS One. 6:e146022011. View Article : Google Scholar | |
Xu K, Wang X, Shi Q, et al: Human prion protein mutants with deleted and inserted octarepeats undergo different pathways to trigger cell apoptosis. J Mol Neurosci. 43:225–234. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sudarshan SR, Schlegel R and Liu XF: The HPV-16 E5 protein represses expression of stress pathway genes XBP-1 and COX-2 in genital keratinocytes. Biochem Biophys Res Commun. 399:617–622. 2010. View Article : Google Scholar : PubMed/NCBI | |
Condjella R, Liu X, Suprynowicz F, et al: The canine papillomavirus E5 protein signals from the endoplasmic reticulum. J Virol. 83:12833–12841. 2009. View Article : Google Scholar : PubMed/NCBI | |
Oh JM, Kim SH, Lee YI, et al: Human papillomavirus E5 protein induces expression of the EP4 subtype of prostaglandin E2 receptor in cyclic AMP response element-dependent pathways in cervical cancer cells. Carcinogenesis. 30:141–149. 2009. | |
McLaughlin-Drubin ME and Münger K: The human papillomavirus E7 oncoprotein. Virology. 384:335–344. 2009. View Article : Google Scholar | |
Toscano-Garibay JD, Benitez-Hess ML and Alvarez-Salas LM: Isolation and characterization of an RNA aptamer of the HPV-16 E7 oncoprotein. Arch Med Res. 42:88–96. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ohlenschläger O, Seiboth T, Zengerling H, et al: Solution structure of the partially folded high-risk human papillomavirus 45 oncoprotein E7. Oncogene. 25:5953–5959. 2006.PubMed/NCBI | |
Liu X, Clements A, Zhao K and Marmorstein R: Structure of human Papillomavirus E7 oncoprotein and its mechanism for inactivation of the retinoblastoma tumor suppressor. J Biol Chem. 281:578–586. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ghim S, Jenson AB, Bubier JA, Silva KA, Smith RS and Sundberg JP: Cataracts in transgenic mice caused by a human papillomavirus type 18 E7 oncogene driven by KRT1–14. Exp Mol Pathol. 85:77–82. 2008.PubMed/NCBI | |
Zimmermann M, Koreck A, Meyer N, et al: TNF-like weak inducer of apoptosis (TWEAK) and TNF-alpha cooperate in the induction of keratinocyte apoptosis. J Allergy Clin Immunol. 127:200–207. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pardali K and Moustakas A: Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta. 1775:21–62. 2007. | |
DeMasi J, Huh KW, Nakatani Y, Münger K and Howley PM: Bovine papillomavirus E7 transformation function correlates with cellular p600 protein binding. Proc Natl Acad Sci USA. 102:11486–11491. 2005. View Article : Google Scholar : PubMed/NCBI | |
DeMasi J, Chao MC, Kumar AS and Howley PM: Bovine papillomavirus E7 oncoprotein inhibits anoikis. J Virol. 81:9419–9425. 2007. View Article : Google Scholar : PubMed/NCBI | |
Severino A, Abbruzzese C, Manente L, et al: Human papillomavirus-16 E7 interacts with Siva-1 and modulates apoptosis in HaCaT human immortalized keratinocytes. J Cell Physiol. 212:118–125. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wells SI, Francis DA, Karpova AY, Dowhanick JJ, Benson JD and Howley PM: Papillomavirus E2 induces senescence in HPV-positive cells via pRB- and p21(CIP)-dependent pathway. EMBO J. 19:5762–5771. 2000. View Article : Google Scholar | |
Mazumder Indra D, Singh RK, Mitra S, Dutta S, et al: Genetic and epigenetic changes of HPV16 in cervical cancer differentially regulate E6/E7 expression and associate with disease progression. Gynecol Oncol. 123:597–604. 2011.PubMed/NCBI | |
Tang S, Tao M, McCoy JP Jr and Zheng ZM: The E7 oncoprotein is translated from spliced E6*I transcripts in high-risk human papillomavirus type 16-or type 18-positive cervical cancer cell lines via translation reinitiation. J Virol. 80:4249–4263. 2006. | |
Dell G and Gaston K: Human papillomavirus and their role in cervical. Cell Mol Life Sci. 58:1923–1942. 2001. View Article : Google Scholar | |
Webster K, Parish J, Pandya M, Stern PL, Clarke AR and Gaston K: The human papillomavirus (HPV) 16 E2 protein induces apoptosis in the absence of other HPV proteins and via a p53-dependent pathway. J Biol Chem. 275:87–94. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wu X and Levine AJ: p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci USA. 91:3602–3606. 1994. View Article : Google Scholar : PubMed/NCBI | |
Frattini MG, Hurst SD, Lim HB, Swaminathan S and Laimins LA: Abrogation of a mitotic checkpoint by E2 proteins from oncogenic human papillomaviruses correlates with increased turnover of the p53 tumor suppressor protein. EMBO J. 16:318–331. 1997. View Article : Google Scholar | |
Bouvard V, Storey A, Pim D and Banks L: Characterization of the human papillomavirus E2 protein: evidence of trans-activation and trans-repression in cervical keratinocytes. EMBO J. 13:5451–5459. 1994.PubMed/NCBI | |
Kim K, Gamer-Hamrick PA, Fisher C, Lee D and Lambert PF: Methylation patterns of papillomavirus DNA, its influence on E2 function, and implications in viral infection. J Virol. 77:12450–12459. 2003. View Article : Google Scholar : PubMed/NCBI | |
Dong XP, Stubenrauch F, Beyer-Finkler E and Pfister H: Prevalence of deletions of YY1-binding sites in episomal HPV 16 DNA from cervical cancers. Int J Cancer. 58:803–808. 1994. View Article : Google Scholar : PubMed/NCBI | |
Pett M and Coleman N: Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis? J Pathol. 212:356–367. 2007. View Article : Google Scholar : PubMed/NCBI | |
Arisa-Pulido H, Peyton CL, Joste NE, Vargas H and Wheeler CM: Human papillomavirus type 16 integration in cervical carcinoma in situ and in invasive cervical cancer. J Clin Microbiol. 44:1755–1762. 2006. View Article : Google Scholar | |
Bhattacharjee B and Sengupta S: CpG methylation of HPV 16 LCR at E2 binding site proximal to P97 is associated with cervical cancer in presence of intact E2. Virology. 354:280–285. 2006. View Article : Google Scholar : PubMed/NCBI |