1.
|
King H, Aubert RE and Herman WH: Global
burden of diabetes, 1995–2025: prevalence, numerical estimates, and
projections. Diabetes Care. 21:1414–1431. 1998.
|
2.
|
Stumvoll M, Goldstein BJ and van Haeften
TW: Type 2 diabetes: principles of pathogenesis and therapy.
Lancet. 365:1333–1346. 2005. View Article : Google Scholar : PubMed/NCBI
|
3.
|
Zimmet P, Alberti KG and Shaw J: Global
and societal implications of the diabetes epidemic. Nature.
414:782–787. 2001. View
Article : Google Scholar : PubMed/NCBI
|
4.
|
Schauer PR, Burguera B, Ikramuddin S, et
al: Effect of laparoscopic Roux-en Y gastric bypass on type 2
diabetes mellitus. Ann Surg. 238:467–484. 2003.PubMed/NCBI
|
5.
|
Rubino F, Gagner M, Gentileschi P, et al:
The early effect of the Roux-en-Y gastric bypass on hormones
involved in body weight regulation and glucose metabolism. Ann
Surg. 240:236–242. 2004. View Article : Google Scholar : PubMed/NCBI
|
6.
|
Gill RS, Sharma AM, Al-Adra DP, Birch DW
and Karmali S: The impact of bariatric surgery in patients with
type-2 diabetes mellitus. Curr Diabetes Rev. 7:185–189. 2011.
View Article : Google Scholar : PubMed/NCBI
|
7.
|
Baggio LL and Drucker DJ: Biology of
incretins: GLP-1 and GIP. Gastroenterology. 132:2131–2157. 2007.
View Article : Google Scholar : PubMed/NCBI
|
8.
|
Chen DC, Stern JS and Atkinson RL: Effects
of ileal transposition on food intake, dietary preference, and
weight gain in Zucker obese rats. Am J Physiol. 258:R269–273.
1990.PubMed/NCBI
|
9.
|
Rulifson IC, Karnik SK, Heiser PW, et al:
Wnt signaling regulates pancreatic beta cell proliferation. Proc
Natl Acad Sci USA. 104:6247–6252. 2007. View Article : Google Scholar : PubMed/NCBI
|
10.
|
Shu L, Matveyenko AV, Kerr-Conte J, Cho
JH, McIntosh CH and Maedler K: Decreased TCF7L2 protein levels in
type 2 diabetes mellitus correlate with downregulation of GIP- and
GLP-1 receptors and impaired beta-cell function. Hum Mol Genet.
18:2388–2399. 2009. View Article : Google Scholar
|
11.
|
Culnan DM, Albaugh V, Sun M, Lynch CJ,
Lang CH and Cooney RN: Ileal interposition improves glucose
tolerance and insulin sensitivity in the obese Zucker rat. Am J
Physiol Gastrointest Liver Physiol. 299:G751–G760. 2010. View Article : Google Scholar : PubMed/NCBI
|
12.
|
Strader AD, Vahl TP, Jandacek RJ, Woods
SC, D’Alessio DA and Seeley RJ: Weight loss through ileal
transposition is accompanied by increased ileal hormone secretion
and synthesis in rats. Am J Physiol Endocrinol Metab.
288:E447–E453. 2005. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Wang TT, Hu SY, Gao HD, et al: Ileal
transposition controls diabetes as well as modified duodenal
jejunal bypass with better lipid lowering in a nonobese rat model
of type II diabetes by increasing GLP-1. Ann Surg. 247:968–975.
2008. View Article : Google Scholar : PubMed/NCBI
|
14.
|
Chelikani PK, Shah IH, Taqi E, Sigalet DL
and Koopmans HH: Comparison of the effects of Roux-en-Y gastric
bypass and ileal transposition surgeries on food intake, body
weight, and circulating peptide YY concentrations in rats. Obes
Surg. 20:1281–1288. 2010. View Article : Google Scholar : PubMed/NCBI
|
15.
|
Patriti A, Aisa MC, Annetti C, et al: How
the hindgut can cure type 2 diabetes. Ileal transposition improves
glucose metabolism and beta-cell function in Goto-Kakizaki rats
through an enhanced Proglucagon gene expression and L-cell number.
Surgery. 142:74–85. 2007. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Cummings BP, Strader AD, Stanhope KL, et
al: Ileal interposition surgery improves glucose and lipid
metabolism and delays diabetes onset in the UCD-T2DM rat.
Gastroenterology. 138:2437–2446. 2010. View Article : Google Scholar : PubMed/NCBI
|
17.
|
Welters HJ and Kulkarni RN: Wnt signaling:
relevance to beta-cell biology and diabetes. Trends Endocrinol
Metab. 19:349–355. 2008. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Angus-Hill ML, Elbert KM, Hidalgo J and
Capecchi MR: T-cell factor 4 functions as a tumor suppressor whose
disruption modulates colon cell proliferation and tumorigenesis.
Proc Natl Acad Sci USA. 108:4914–4919. 2011. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Jin T and Liu L: The Wnt signaling pathway
effector TCF7L2 and type 2 diabetes mellitus. Mol Endocrinol.
22:2383–2392. 2008. View Article : Google Scholar : PubMed/NCBI
|
20.
|
Grant SF, Thorleifsson G, Reynisdottir I,
et al: Variant of transcription factor 7-like 2 (TCF7L2) gene
confers risk of type 2 diabetes. Nat Genet. 38:320–323. 2006.
View Article : Google Scholar : PubMed/NCBI
|
21.
|
Lyssenko V, Lupi R, Marchetti P, et al:
Mechanisms by which common variants in the TCF7L2 gene increase
risk of type 2 diabetes. J Clin Invest. 117:2155–2163. 2007.
View Article : Google Scholar : PubMed/NCBI
|
22.
|
Shu L, Sauter NS, Schulthess FT,
Matveyenko AV, Oberholzer J and Maedler K: Transcription factor
7-like 2 regulates beta-cell survival and function in human
pancreatic islets. Diabetes. 57:645–653. 2008. View Article : Google Scholar : PubMed/NCBI
|
23.
|
da Silva Xavier G, Mondragon A, Sun G,
Chen L, McGinty JA, French PM and Rutter GA: Abnormal glucose
tolerance and insulin secretion in pancreas-specific Tcf7l2-null
mice. Diabetologia. 55:2667–2676. 2012.PubMed/NCBI
|