1
|
Liggins J, Bluck LJ, Runswick S, et al:
Daidzein and genistein content of fruits and nuts. J Nutr Biochem.
11:326–331. 2000. View Article : Google Scholar : PubMed/NCBI
|
2
|
Liggins J, Bluck LJ, Runswick S, et al:
Daidzein and genistein contents of vegetables. Br J Nutr.
84:717–725. 2000.PubMed/NCBI
|
3
|
Liggins J, Mulligan A, Runswick S and
Bingham SA: Daidzein and genistein content of cereals. Eur J Clin
Nutr. 56:961–966. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Akiyama T, Ishida J, Nakagawa S, et al:
Genistein, a specific inhibitor of tyrosine-specific protein
kinases. J Biol Chem. 262:5592–5595. 1987.PubMed/NCBI
|
5
|
Ullrich A and Schlessinger J: Signal
transduction by receptors with tyrosine kinase activity. Cell.
61:203–212. 1990. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kyle E, Neckers L, Takimoto C, et al:
Genistein-induced apoptosis of prostate cancer cells is preceded by
a specific decrease in focal adhesion kinase activity. Mol
Pharmacol. 51:193–200. 1997.
|
7
|
Peeters PH, Keinan-Boker L, van der Schouw
YT and Grobbee DE: Phytoestrogens and breast cancer risk. Review of
the epidemiological evidence. Breast Cancer Res Treat. 77:171–183.
2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Qin LQ, Xu JY, Wang PY and Hoshi K:
Soyfood intake in the prevention of breast cancer risk in women: a
meta-analysis of observational epidemiological studies. J Nutr Sci
Vitaminol (Tokyo). 52:428–436. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Iwasaki M and Tsugane S: Risk factors for
breast cancer: epidemiological evidence from Japanese studies.
Cancer Sci. 102:1607–1614. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lamartiniere CA, Zhang JX and Cotroneo MS:
Genistein studies in rats: potential for breast cancer prevention
and reproductive and developmental toxicity. Am J Clin Nutr.
68:1400S–1405S. 1998.PubMed/NCBI
|
11
|
de Lemos ML: Effects of soy phytoestrogens
genistein and daidzein on breast cancer growth. Ann Pharmacother.
35:1118–1121. 2001.PubMed/NCBI
|
12
|
Kittaneh M, Montero AJ and Glück S:
Molecular profiling for breast cancer: a comprehensive review.
Biomark Cancer. 5:61–70. 2013.PubMed/NCBI
|
13
|
Esfahlan RJ, Zarghami N, Esfahlan AJ, et
al: The possible impact of obesity on androgen, progesterone and
estrogen receptors (ERα and ERβ) gene expression in breast cancer
patients. Breast Cancer (Auckl). 5:227–237. 2011.PubMed/NCBI
|
14
|
Williams C and Lin CY: Oestrogen receptors
in breast cancer: basic mechanisms and clinical implications.
Ecancermedicalscience. 7:3702013.PubMed/NCBI
|
15
|
Sirtori CR, Arnoldi A and Johnson SK:
Phytoestrogens: end of a tale? Ann Med. 37:423–438. 2005.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Mueller SO, Simon S, Chae K, et al:
Phytoestrogens and their human metabolites show distinct agonistic
and antagonistic properties on estrogen receptor alpha (ERalpha)
and ERbeta in human cells. Toxicol Sci. 80:14–25. 2004. View Article : Google Scholar
|
17
|
Bovee TF, Schoonen WG, Hamers AR, et al:
Screening of synthetic and plant-derived compounds for
(anti)estrogenic and (anti)androgenic activities. Anal Bioanal
Chem. 390:1111–1119. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Choi EJ and Kim GH: Antiproliferative
activity of daidzein and genistein may be related to ERα/c-erbB-2
expression in human breast cancer cells. Mol Med Rep. 7:781–784.
2013.PubMed/NCBI
|
19
|
Hsu JT, Hung HC, Chen CJ, et al: Effects
of the dietary phytoestrogen biochanin A on cell growth in the
mammary carcinoma cell line MCF-7. J Nutr Biochem. 10:510–517.
1999. View Article : Google Scholar : PubMed/NCBI
|
20
|
Choi EJ and Kim T: Equol induced apoptosis
via cell cycle arrest in human breast cancer MDA-MB-453 but not
MCF-7 cells. Mol Med Rep. 1:239–244. 2008.PubMed/NCBI
|
21
|
Rajah TT, Du N, Drews N and Cohn R:
Genistein in the presence of 17beta-estradiol inhibits
proliferation of ERbeta breast cancer cells. Pharmacology.
84:68–73. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Björnström L and Sjöberg M: Mechanisms of
estrogen receptor signaling: convergence of genomic and nongenomic
actions on target genes. Mol Endocrinol. 19:833–842.
2005.PubMed/NCBI
|
23
|
Liu MM, Huang Y and Wang J: Developing
phytoestrogens for breast cancer prevention. Anticancer Agents Med
Chem. 12:1306–1313. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Iyengar NM, Hudis CA and Dannenberg AJ:
Obesity and inflammation: new insights into breast cancer
development and progression. Am Soc Clin Oncol Educ Book. 46–51.
2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Musgrove EA, Lee CS, Buckley MF and
Sutherland RL: Cyclin D1 induction in breast cancer cells shortens
G1 and is sufficient for cells arrested in G1 to complete the cell
cycle. Proc Natl Acad Sci USA. 91:8022–8026. 1994. View Article : Google Scholar : PubMed/NCBI
|
26
|
Buckley MF, Sweeney KJ, Hamilton JA, et
al: Expression and amplification of cyclin genes in human breast
cancer. Oncogene. 8:2127–2133. 1993.PubMed/NCBI
|
27
|
Bartkova J, Lukas J, Müller H, et al:
Cyclin D1 protein expression and function in human breast cancer.
Int J Cancer. 57:353–361. 1994. View Article : Google Scholar : PubMed/NCBI
|
28
|
Barbareschi M, Pelosio P, Caffo O, et al:
Cyclin-D1-gene amplification and expression in breast carcinoma:
relation with clinicopathologic characteristics and with
retinoblastoma gene product, p53 and p21WAF1 immunohistochemical
expression. Int J Cancer. 74:171–174. 1997. View Article : Google Scholar
|
29
|
Utsumi T, Yoshimura N, Maruta M, et al:
Correlation of cyclin D1 MRNA levels with clinico-pathological
parameters and clinical outcome in human breast carcinomas. Int J
Cancer. 89:39–43. 2000. View Article : Google Scholar : PubMed/NCBI
|
30
|
Butt AJ, McNeil CM, Musgrove EA and
Sutherland RL: Downstream targets of growth factor and oestrogen
signalling and endocrine resistance: the potential roles of c-Myc,
cyclin D1 and cyclin E. Endocr Relat Cancer. 12(Suppl 1): S47–S59.
2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Herold C, Rennekampff HO and Engeli S:
Apoptotic pathways in adipose tissue. Apoptosis. 18:911–816. 2013.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Nelson-Dooley C, Della-Fera MA, Hamrick M
and Baile CA: Novel treatments for obesity and osteoporosis:
targeting apoptotic pathways in adipocytes. Curr Med Chem.
12:2215–25. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang Y and Huang C: Targeting adipocyte
apoptosis: a novel strategy for obesity therapy. Biochem Biophys
Res Commun. 417:1–4. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Cory S and Adams JM: Killing cancer cells
by flipping the Bcl-2/Bax switch. Cancer Cell. 8:5–6. 2005.
View Article : Google Scholar : PubMed/NCBI
|