1
|
Danaei G, Finucane MM, Lu Y, et al; Global
Burden of Metabolic Risk Factors of Chronic Diseases Collaborating
Group (Blood Glucose). National, regional, and global trends in
fasting plasma glucose and diabetes prevalence since 1980:
systematic analysis of health examination surveys and
epidemiological studies with 370 country-years and 2.7 million
participants. Lancet. 378:31–40. 2011.
|
2
|
Whiting DR, Guariguata L, Weil C and Shaw
J: IDF diabetes atlas: global estimates of the prevalence of
diabetes for 2011 and 2030. Diabetes Res Clin Pract. 94:311–321.
2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Goldberg RB: Cytokine and cytokine-like
inflammation markers, endothelial dysfunction, and imbalanced
coagulation in development of diabetes and its complications. J
Clin Endocrinol Metab. 94:3171–3182. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kolb H and Mandrup-Poulsen T: An immune
origin of type 2 diabetes? Diabetologia. 48:1038–1050. 2005.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Kalupahana NS, Moustaid-Moussa N and
Claycombe KJ: Immunity as a link between obesity and insulin
resistance. Mol Aspects Med. 33:26–34. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Festa A, D’Agostino R Jr, Tracy RP and
Haffner SM; Insulin Resistance Atherosclerosis Study. Elevated
levels of acute-phase proteins and plasminogen activator
inhibitor-1 predict the development of type 2 diabetes: the insulin
resistance atherosclerosis study. Diabetes. 51:1131–1137. 2002.
View Article : Google Scholar
|
7
|
Barzilay JI, Abraham L, Heckbert SR, et
al: The relation of markers of inflammation to the development of
glucose disorders in the elderly: the Cardiovascular Health Study.
Diabetes. 50:2384–2389. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Spranger J, Kroke A, Möhlig M, et al:
Inflammatory cytokines and the risk to develop type 2 diabetes:
results of the prospective population-based European Prospective
Investigation into Cancer and Nutrition (EPIC)-Potsdam Study.
Diabetes. 52:812–817. 2003. View Article : Google Scholar
|
9
|
Wang X, Bao W, Liu J, et al: Inflammatory
markers and risk of type 2 diabetes: a systematic review and
meta-analysis. Diabetes Care. 36:166–175. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Nakanishi N, Yoshida H, Matsuo Y, Suzuki K
and Tatara K: White blood-cell count and the risk of impaired
fasting glucose or type II diabetes in middle-aged Japanese men.
Diabetologia. 45:42–48. 2002. View Article : Google Scholar : PubMed/NCBI
|
11
|
Pedicino D, Liuzzo G, Trotta F, et al:
Adaptive immunity, inflammation, and cardiovascular complications
in type 1 and type 2 diabetes mellitus. J Diabetes Res.
2013:1842582013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ridker PM, Howard CP, Walter V, et al;
CANTOS Pilot Investigative Group. Effects of interleukin-1β
inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive
protein, interleukin-6, and fibrinogen: a phase IIb randomized,
placebo-controlled trial. Circulation. 126:2739–2748. 2012.
|
13
|
Sauter NS, Schulthess FT, Galasso R,
Castellani LW and Maedler K: The antiinflammatory cytokine
interleukin-1 receptor antagonist protects from high-fat
diet-induced hyperglycemia. Endocrinology. 149:2208–2218. 2008.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Emanuelli B, Peraldi P, Filloux C, et al:
SOCS-3 inhibits insulin signaling and is up-regulated in response
to tumor necrosis factor-alpha in the adipose tissue of obese mice.
J Biol Chem. 276:47944–47949. 2001.PubMed/NCBI
|
15
|
Donath MY, Böni-Schnetzler M, Ellingsgaard
H and Ehses JA: Islet inflammation impairs the pancreatic beta-cell
in type 2 diabetes. Physiology (Bethesda). 24:325–331. 2009.
View Article : Google Scholar : PubMed/NCBI
|
16
|
McMorrow JP and Murphy EP: Inflammation: a
role for NR4A orphan nuclear receptors? Biochem Soc Trans.
39:688–693. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hamers AA, Hanna RN, Nowyhed H, Hedrick CC
and de Vries CJ: NR4A nuclear receptors in immunity and
atherosclerosis. Curr Opin Lipidol. 24:381–385. 2013.PubMed/NCBI
|
18
|
Hanna RN, Shaked I, Hubbeling HG, et al:
NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory
phenotype and increases atherosclerosis. Circ Res. 110:416–427.
2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Carlin LM, Stamatiades EG, Auffray C, et
al: Nr4a1-dependent Ly6C (low) monocytes monitor endothelial cells
and orchestrate their disposal. Cell. 153:362–375. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kim SO, Ono K, Tobias PS and Han J: Orphan
nuclear receptor Nur77 is involved in caspase-independent
macrophage cell death. J Exp Med. 197:1441–1452. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Fahrner TJ, Carroll SL and Milbrandt J:
The NGFI-B protein, an inducible member of the thyroid/steroid
receptor family, is rapidly modified posttranslationally. Mol Cell
Biol. 10:6454–6459. 1990.PubMed/NCBI
|
22
|
You B, Jiang YY, Chen S, Yan G and Sun J:
The orphan nuclear receptor Nur77 suppresses endothelial cell
activation through induction of IkappaBalpha expression. Circ Res.
104:742–749. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Pei L, Castrillo A and Tontonoz P:
Regulation of macrophage inflammatory gene expression by the orphan
nuclear receptor Nur77. Mol Endocrinol. 20:786–794. 2006.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Arkenbout EK, de Waard V, van Bragt M, et
al: Protective function of transcription factor TR3 orphan receptor
in atherogenesis: decreased lesion formation in carotid artery
ligation model in TR3 transgenic mice. Circulation. 106:1530–1535.
2002. View Article : Google Scholar
|
25
|
Bonta PI, van Tiel CM, Vos M, et al:
Nuclear receptors Nur77, Nurr1, and NOR-1 expressed in
atherosclerotic lesion macrophages reduce lipid loading and
inflammatory responses. Arterioscler Thromb Vasc Biol.
26:2288–2294. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Pei L, Castrillo A, Chen M, Hoffmann A and
Tontonoz P: Induction of NR4A orphan nuclear receptor expression in
macrophages in response to inflammatory stimuli. J Biol Chem.
280:29256–29262. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Haffner SM, Miettinen H and Stern MP: The
homeostasis model in the San Antonio Heart Study. Diabetes Care.
20:1087–1092. 1997. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhang P, Hu Y, Yang J, et al: The orphan
nuclear receptor Nur77 regulates hepatic cholesterol metabolism
through the suppression of LDLR and HMGCR expression. Mol Med Rep.
5:1541–1547. 2012.PubMed/NCBI
|
29
|
Catalán V, Gómez-Ambrosi J, Lizanzu A, et
al: RIP140 gene and protein expression levels are downregulated in
visceral adipose tissue in human morbid obesity. Obes Surg.
19:771–776. 2009.PubMed/NCBI
|
30
|
Perez-Sieira S, Martinez G, Porteiro B, et
al: Female Nur77-deficient mice show increased susceptibility to
diet-induced obesity. PLoS One. 8:e538362013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Chao LC, Wroblewski K, Zhang Z, et al:
Insulin resistance and altered systemic glucose metabolism in mice
lacking Nur77. Diabetes. 58:2788–2796. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Pei L, Waki H, Vaitheesvaran B, Wilpitz
DC, Kurland IJ and Tontonoz P: NR4A orphan nuclear receptors are
transcriptional regulators of hepatic glucose metabolism. Nat Med.
12:1048–1055. 2006. View
Article : Google Scholar : PubMed/NCBI
|
33
|
Briand O, Helleboid-Chapman A, Ploton M,
et al: The nuclear orphan receptor Nur77 is a lipotoxicity sensor
regulating glucose-induced insulin secretion in pancreatic β-cells.
Mol Endocrinol. 26:399–413. 2012.PubMed/NCBI
|
34
|
Shao Q, Shen LH, Hu LH, et al: Nuclear
receptor Nur77 suppresses inflammatory response dependent on COX-2
in macrophages induced by oxLDL. J Mol Cell Cardiol. 49:304–311.
2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Karin M and Delhase M: The I kappa B
kinase (IKK) and NF-kappa B: key elements of proinflammatory
signalling. Semin Immunol. 12:85–98. 2000. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hong CY, Park JH, Ahn RS, et al: Molecular
mechanism of suppression of testicular steroidogenesis by
proinflammatory cytokine tumor necrosis factor alpha. Mol Cell
Biol. 24:2593–2604. 2004. View Article : Google Scholar
|
37
|
Wilson TE, Fahrner TJ, Johnston M and
Milbrandt J: Identification of the DNA binding site for NGFI-B by
genetic selection in yeast. Science. 252:1296–1300. 1991.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Evans PC: Nur77: orphaned at birth but
adopted by the nuclear factor kappaB signaling pathway. Circ Res.
104:707–709. 2009. View Article : Google Scholar : PubMed/NCBI
|