1
|
Zieliński P and Słoniewski P: Virtual
modelling of the surgical anatomy of the petrous bone. Folia
Morphol (Warsz). 60:343–346. 2001.
|
2
|
Li PM, Wang H, Northrop C, Merchant SN and
Nadol JB Jr: Anatomy of the round window and hook region of the
cochlea with implications for cochlear implantation and other
endocochlear surgical procedures. Otol Neurotol. 28:641–648. 2007.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Morita N, Kariya S, Farajzadeh Deroee A,
et al: Membranous labyrinth volumes in normal ears and Ménière
disease: a three-dimensional reconstruction study. Laryngoscope.
119:2216–2220. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Shimizu S, Cureoglu S, Yoda S, Suzuki M
and Paparella MM: Blockage of longitudinal flow in Meniere’s
disease: A human temporal bone study. Acta Otolaryngol.
131:263–268. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Jager L, Bonell H, Liebl M, et al: CT of
the normal temporal bone: comparison of multi- and single-detector
row CT. Radiology. 235:133–141. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Miguéis A, Melo Freitas P and Cordeiro M:
Anatomic evaluation of the membranous labyrinth by imaging: 3D-MRI
volume-rendered reconstructions. Rev Laryngol Otol Rhinol (Bord).
128:37–40. 2007.
|
7
|
Uzun H, Curthoys IS and Jones AS: A new
approach to visualizing the membranous structures of the inner
ear-high resolution X-ray micro-tomography. Acta Otolaryngol.
127:568–573. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Mukherjee P, Uzun-Coruhlu H, Curthoys IS,
Jones AS, Bradshaw AP and Pohl DV: Three-dimensional analysis of
the vestibular end organs in relation to the stapes footplate and
piston placement. Otol Neurotol. 32:367–372. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lane JI, Witte RJ, Henson OW, Driscoll CL,
Camp J and Robb RA: Imaging microscopy of the middle and inner ear.
Part II MR microscopy. Clin Anat. 18:409–415. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ayanzen RH, Bird CR, Keller PJ, et al:
Cerebral MR venography: normal anatomy and potential diagnostic
pitfalls. Am J Neuroradio. 21:74–78. 2000.
|
11
|
Antunez JC, Galey FR, Linthicum FH and
McCann GD: Computer-aided and graphic reconstruction of the human
endolymphatic duct and sac: a method for comparing Meniere’s and
non-Meniere’s disease cases. Ann Otol Rhinol Laryngol Suppl.
89:23–32. 1980.PubMed/NCBI
|
12
|
Lutz C, Takagi A, Janecka IP and Sando I:
Three-dimensional computer reconstruction of a temporal bone.
Otolaryngol Head Neck Surg. 101:522–526. 1989.PubMed/NCBI
|
13
|
Page C, Taha F and Le Gars D:
Three-dimensional imaging of the petrous bone for the middle fossa
approach to the internal acoustic meatus: an experimental study.
Surg Radiol Anat. 24:388–392. 2002.
|
14
|
Bernardo A, Preul MC, Zabramski JM and
Spetzler RF: A three-dimensional interactive virtual dissection
model to simulate transpetrous surgical avenues. Neurosurgery.
52:499–505. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Tang K, Mo DP and Bao SD: Application of
virtual reality technique in construction of 3-dimensional petrous
bone model. Zhonghua Shi Yan Wai Ke Za Zhi. 26:794–795. 2009.(In
Chinese).
|
16
|
Hofman R, Segenhout JM, Albers FW and Wit
HP: The relationship of the round window membrane to the cochlear
aqueduct shown in three-dimensional imaging. Hear Res. 209:19–23.
2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Vogel U: New approach for 3D imaging and
geometry modeling of the human inner ear. ORL J Otorhinolaryngol
Relat. 61:259–267. 1999. View Article : Google Scholar
|
18
|
Chan LL, Manolidis S, Taber KH and Hayman
LA: In vivo measurements of temporal bone on reconstructed clinical
high-resolution computed tomography scans. Laryngoscope.
110:1375–1378. 2000. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ghiz AF, Salt AN, DeMott JE, et al:
Quantitative anatomy of the round window and cochlear aqueduct in
guinea pigs. Hear Res. 162:105–112. 2001. View Article : Google Scholar : PubMed/NCBI
|
20
|
Klingebiel R, Thieme N, Kivelitz D, et al:
Three-dimensional imaging of the inner ear by volume-rendered
reconstructions of magnetic resonance data. Arch Otolaryngol Head
Neck Surg. 128:549–553. 2002. View Article : Google Scholar : PubMed/NCBI
|
21
|
Pettit K, Henson MM, Henson OW, Gewalt SL
and Salt AN: Quantitative anatomy of the guinea pig endolymphatic
sac. Hear Res. 174:1–8. 2002. View Article : Google Scholar : PubMed/NCBI
|
22
|
Voie A: Imaging the intact guinea pig
tympanic bulla by orthogonal-plane fluorescence optical sectioning
microscopy. Hear Res. 171:119–128. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Santi PA, Blair A, Bohne BA, Lukkes J and
Nietfeld J: The digital cytocochleogram. Hear Res. 192:75–82. 2004.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Lane JI, Witte RJ, Driscoll CL, Camp JJ
and Robb RA: Imaging microscopy of the middle and inner ear: Part
I: CT microscopy. Clin Anat. 17:607–612. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Rother T, Schröck-Pauli C, Karmody CS and
Bachor E: 3-D reconstruction of she vestibular endorgans in
pediatric temporal bones. Hear Res. 185:22–34. 2003. View Article : Google Scholar : PubMed/NCBI
|
26
|
Li SF, Zhang TY and Wang ZM: An approach
for precise three-dimensional modeling of the human inner ear. ORL
J Otorhinalaryngal Relat Spec. 68:302–310. 2006. View Article : Google Scholar
|