1
|
Zhang J, Zhen YF, Pu-Bu-Ci-Ren, et al:
Salidroside attenuates beta amyloid-induced cognitive deficits via
modulating oxidative stress and inflammatory mediators in rat
hippocampus. Behav Brain Res. 244:70–81. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
El Tannir El Tayara N, Delatour B, Le
Cudennec C, et al: Age-related evolution of amyloid burden, iron
load, and MR relaxation times in a transgenic mouse model of
Alzheimer’s disease. Neurobiol Dis. 22:199–208. 2006. View Article : Google Scholar
|
3
|
Crapper McLachlan DR, Dalton AJ, Kruck TP,
et al: Intramuscular desferrioxamine in patients with Alzheimer’s
disease. Lancet. 337:1304–1308. 1991. View Article : Google Scholar : PubMed/NCBI
|
4
|
Xian-Hui D, Wei-Juan G, Tie-Mei S, et al:
Age-related changes of brain iron load changes in the frontal
cortex in APPswe/PS1ΔE9 transgenic mouse model of Alzheimer’s
disease. J Trace Elem Med Biol. Dec 3–2014.(Epub ahead of
print).
|
5
|
Fleming MD, Trenor CC 3rd, Su MA, et al:
Microcytic anaemia mice have a mutation in Nramp2, a candidate iron
transporter gene. Nat Genet. 16:383–386. 1997.PubMed/NCBI
|
6
|
Li H, Li F, Sun H and Qian ZM:
Membrane-inserted conformation of transmembrane domain 4 of
divalent-metal transporter. Biochem J. 372:757–766. 2003.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang LH, Wang X, Zheng ZH, et al: Altered
expression and distribution of zinc transporters in APP/PS1
transgenic mouse brain. Neurobiol Aging. 31:74–87. 2010. View Article : Google Scholar
|
8
|
Gunshin H, Mackenzie B, Berger UV, et al:
Cloning and characterization of a mammalian proton-coupled
metal-ion transporter. Nature. 388:482–488. 1997. View Article : Google Scholar : PubMed/NCBI
|
9
|
Erikson KM and Aschner M: Increased
manganese uptake by primary astrocyte cultures with altered iron
status is mediated primarily by divalent metal transporter.
Neurotoxicology. 27:125–130. 2006. View Article : Google Scholar
|
10
|
Lee PL, Gelbart T, West C, et al: The
human Nramp2 gene: characterization of the gene structure,
alternative splicing, promoter region and polymorphisms. Blood
Cells Mol Dis. 24:199–215. 1998. View Article : Google Scholar : PubMed/NCBI
|
11
|
Mackenzie B, Takanaga H, Hubert N, et al:
Functional properties of multiple isoforms of human divalent
metal-ion transporter 1 (DMT1). Biochem J. 403:59–69. 2007.
View Article : Google Scholar :
|
12
|
De Domenico I, Nemeth E, Nelson JM, et al:
The hepcidin-binding site on ferroportin is evolutionarily
conserved. Cell Metab. 8:146–156. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Donovan A, Lima CA, Pinkus JL, et al: The
iron exporter ferroportin/Slc40a1 is essential for iron
homeostasis. Cell Metab. 1:191–200. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wan S, Hua Y, Keep RF, et al: Deferoxamine
reduces CSF free iron levels following intracerebral hemorrhage.
Acta Neurochir Suppl. 96:199–202. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hishikawa T, Ono S, Ogawa T, et al:
Effects of deferoxamine-activated hypoxia-inducible factor-1 on the
brainstem after subarachnoid hemorrhage in rats. Neurosurgery.
62:232–241. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Gao J, Inagaki Y and Liu Y: Research
progress on flavonoids isolated from traditional Chinese medicine
in treatment of Alzheimer’s disease. Intractable Rare Dis Res.
2:3–10. 2013.PubMed/NCBI
|
17
|
Liu XY, Zi H, Zheng HX, et al: Tissues
distribution of Icariin and its metabolites in kidney of
osteoporosis model rats. Zhongguo Shiyan Fangiixue Zazhi.
20:125–128. 2014.
|
18
|
Chen GH and Huang WF: Progress in
pharmacological effects of compositions of Astragalus membranaceus.
Zhongguo Xinyao Zazhi. 17:1482–1485. 2008.
|
19
|
Morris R: Developments of a water-maze
procedure for studying spatial learning in the rat. J Neurosci
Methods. 11:47–60. 1984. View Article : Google Scholar : PubMed/NCBI
|
20
|
Gu Y, Hua Y, Keep RF, et al: Deferoxamine
reduces intracerebral hematoma-induced iron accumulation and
neuronal death in piglets. Stroke. 40:2241–2243. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yin C, Li S, Zhao W and Feng J: Brain
imaging of mild cognitive impairment and Alzheimer’s disease.
Neural Regen Res. 8:435–444. 2013.PubMed/NCBI
|
22
|
Blennow K, de Leon MJ and Zetterberg H:
Alzheimer’s disease. Lancet. 368:387–403. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Imbimbo BP, Lombard J and Pomara N:
Pathophysiology of Alzheimer’s disease. Neuroimaging Clin N Am.
15:727–753. 2005. View Article : Google Scholar
|
24
|
Nojima J, Maeda A, Aoki S, et al: Effect
of rice-expressed amyloid β in the Tg2576 Alzheimer’s disease
transgenic mouse model. Vaccine. 29:6252–6258. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Tang J, Wu L, Huang HL, et al: Back
propagation artificial neural network for community Alzheimer’s
disease screening in China. Neural Regen Res. 8:270–276.
2013.PubMed/NCBI
|
26
|
Guo C, Wang T, Zheng W, et al: Intranasal
deferoxamine reverses iron-induced memory deficits and inhibits
amyloidogenic APP processing in a transgenic mouse model of
Alzheimer’s disease. Neurobiol Aging. 34(2): 562–75. 2013.
View Article : Google Scholar
|
27
|
Overk CR, Perez SE, Ma C, et al: Sex
steroid levels and AD-like pathology in 3xTgAD mice. J
Neuroendocrinol. 25:131–144. 2013. View Article : Google Scholar
|
28
|
Marques SC, Lemos R, Ferreiro E, et al:
Epigenetic regulation of BACE1 in Alzheimer’s disease patients and
in transgenic mice. Neuroscience. 220:256–266. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yang Y, Shiao C, Hemingway JF, et al:
Suppressed retinal degeneration in aged wild type and APPswe/PS1ΔE9
mice by bone marrow transplantation. PLoS One. 8:e642462013.
View Article : Google Scholar
|
30
|
Cheng D, Low JK, Logge W, et al: Novel
behavioural characteristics of female APPSwe/PS1ΔE9 double
transgenic mice. Behav Brain Res. 260:111–118. 2014. View Article : Google Scholar
|
31
|
Whitnall M and Richardson DR: Iron: a new
target for pharmacological intervention in neurodegenerative
diseases. Semin Pediatr Neurol. 13:186–197. 2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Guo C, Wang T, Zheng W, et al: Intranasal
deferoxamine reverses iron-induced memory deficits and inhibits
amyloidogenic APP processing in a transgenic mouse model of
Alzheimer’s disease. Neurobiol Aging. 34:562–575. 2013. View Article : Google Scholar
|
33
|
Wu J, Bie B, Yang H, et al: Activation of
the CB2 receptor system reverses amyloid-induced memory deficiency.
Neurobiol Aging. 34:791–804. 2013. View Article : Google Scholar
|
34
|
Han M, Liu Y, Tan Q, et al: Therapeutic
efficacy of stemazole in a beta-amyloid injection rat model of
Alzheimer’s disease. Eur J Pharmacol. 657:104–110. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hardy J and Allsop D: Amyloid deposition
as the central event in the aetiology of Alzheimer’s disease.
Trends Pharmacol Sci. 12:383–388. 1991. View Article : Google Scholar : PubMed/NCBI
|
36
|
Park MH, Lee JK, Choi S, et al:
Recombinant soluble neprilysin reduces amyloid-beta accumulation
and improves memory impairment in Alzheimer’s disease mice. Brain
Res. 1529:113–124. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Miller DL, Papayannopoulos IA, Styles J,
et al: Peptide compositions of the cerebrovascular and senile
plaque core amyloid deposits of Alzheimer’s disease. Arch Biochem
Biophys. 301:41–52. 1993. View Article : Google Scholar : PubMed/NCBI
|
38
|
Delacourte A, Sergeant N, Champain D, et
al: Nonoverlapping but synergetic tau and APP pathologies in
sporadic Alzheimer’s disease. Neurology. 59:398–407. 2002.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Lue LF, Kuo YM, Roher AE, et al: Soluble
amyloid beta peptide concentration as a predictor of synaptic
change in Alzheimer’s disease. Am J Pathol. 155:853–862. 1999.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Li S, Jin M, Koeglsperger T, et al:
Soluble Aβ oligomers inhibit long-term potentiation through a
mechanism involving excessive activation of extrasynaptic
NR2B-containing NMDA receptors. J Neurosci. 31:6627–6638. 2011.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Masliah E, Mallory M, Alford M, et al:
Altered expression of synaptic proteins occurs early during
progression of Alzheimer’s disease. Neurology. 56:127–129. 2001.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Sze CI, Troncoso JC, Kawas C, et al: Loss
of the presynaptic vesicle protein synaptophysin in hippocampus
correlates with cognitive decline in Alzheimer disease. J
Neuropathol Exp Neurol. 56:933–944. 1997. View Article : Google Scholar : PubMed/NCBI
|
43
|
Jomova K and Valko M: Importance of iron
chelation in free radical-induced oxidative stress and human
disease. Curr Pharm Des. 17:3460–3473. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Huang X, Atwood CS, Moir RD, et al: Trace
metal contamination initiates the apparent auto-aggregation,
amyloidosis, and oligomerization of Alzheimer’s Abeta peptides. J
Biol Inorg Chem. 9:954–960. 2004. View Article : Google Scholar : PubMed/NCBI
|
45
|
Liu G, Huang W, Moir RD, et al: Metal
exposure and Alzheimer’s pathogenesis. J Struct Biol. 155:45–51.
2006. View Article : Google Scholar : PubMed/NCBI
|
46
|
Lovell MA, Robertson JD, Teesdale WJ, et
al: Copper, iron and zinc in Alzheimer’s disease senile plaques. J
Neurol Sci. 158:47–52. 1998. View Article : Google Scholar : PubMed/NCBI
|
47
|
Finefrock AE, Bush AI and Doraiswamy PM:
Current status of metals as therapeutic targets in Alzheimer’s
disease. J Am Geriatr Soc. 51:1143–1148. 2003. View Article : Google Scholar : PubMed/NCBI
|
48
|
Colangelo V, Schurr J, Ball MJ, et al:
Gene expression profiling of 12633 genes in Alzheimer hippocampal
CA1: transcription and neurotrophic factor down-regulation and
up-regulation of apoptotic and pro-inflammatory signaling. J
Neurosci Res. 70:462–473. 2002. View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhang LH, Wang X, Stoltenberg M, et al:
Abundant expression of zinc transporters in the amyloid plaques of
Alzheimer’s disease brain. Brain Res Bull. 77:55–60. 2008.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Kawabata H, Germain RS, Vuong PT, et al:
Transferrin receptor2-alpha supports cell growth both in
iron-chelated cultured cells and in vivo. J Biol Chem.
275:16618–16625. 2000. View Article : Google Scholar : PubMed/NCBI
|
51
|
McKie AT, Marciani P, Rolfs A, et al: A
novel duodenal iron-regulated transporter, IREG1, implicated in the
basolateral transfer of iron to the circulation. Mol Cell.
5:299–309. 2000. View Article : Google Scholar : PubMed/NCBI
|
52
|
Abboud S and Haile DJ: A novel mammalian
iron-regulated protein involved in intracellular iron metabolism. J
Biol Chem. 275:19906–19912. 2000. View Article : Google Scholar : PubMed/NCBI
|
53
|
Hellman NE and Gitlin JD: Ceruloplasmin
metabolism and function. Annu Rev Nutr. 22:439–458. 2002.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Anderson GJ, Frazer DM, McKie AT and Vulpe
CD: The ceruloplasmin homolog hephaestin and the control of
intestinal iron absorption. Blood Cells Mol Dis. 29:367–375. 2002.
View Article : Google Scholar
|
55
|
Fleming RE and Sly WS: Hepcidin: a
putative iron-regulatory hormone relevant to hereditary
hemochromatosis and the anemia of chronic disease. Proc Natl Acad
Sci USA. 98:8160–8162. 2001. View Article : Google Scholar : PubMed/NCBI
|
56
|
Krause A, Neitz S, Mägert HJ, et al:
LEAP-1, a novel highly disulfide-bonded human peptide, exhibits
antimicrobial activity. FEBS Lett. 480:147–150. 2000. View Article : Google Scholar : PubMed/NCBI
|
57
|
Shawki A and Mackenzie B: Interaction of
calcium with the human divalent metal-ion transporter-1. Biochem
Biophys Res Commun. 393:471–475. 2010. View Article : Google Scholar : PubMed/NCBI
|
58
|
Donovan A, Brownlie A, Zhou Y, et al:
Positional cloning of zebrafish ferroportin1 identifies a conserved
vertebrate iron exporter. Nature. 403:776–781. 2000. View Article : Google Scholar : PubMed/NCBI
|
59
|
Anderson GJ and Vulpe CD: Mammalian iron
transport. Cell Mol Life Sci. 66:3241–3261. 2009. View Article : Google Scholar : PubMed/NCBI
|
60
|
Ke Y, Chang YZ, Duan XL, et al:
Age-dependent and iron-independent expression of two mRNA isoforms
of divalent metal transporter 1 in rat brain. Neurobiol Aging.
26:739–748. 2005. View Article : Google Scholar : PubMed/NCBI
|