1
|
MacKenzie EL, Iwasaki K and Tsuji Y:
Intracellular iron transport and storage: From molecular mechanisms
to health implications. Antioxid Redox Signal. 10:997–1030. 2008.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Olivieri NF, Liu PP, Sher GD, et al: Brief
report: Combined liver and heart transplantation for end-stage
iron-induced organ failure in an adult with homozygous
beta-thalassemia. N Engl J Med. 330:1125–1127. 1994. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kohgo Y, Ikuta K, Ohtake T, Torimoto Y and
Kato J: Body iron metabolism and pathophysiology of iron overload.
Int J Hematol. 88:7–15. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Weinberg ED: Iron loading: A risk factor
for osteoporosis. Biometals. 19:633–635. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Weinberg ED: Role of iron in osteoporosis.
Pediatr Endocrinol Rev. 6:(Suppl 1). 81–85. 2008.PubMed/NCBI
|
6
|
Jian J, Pelle E and Huang X: Iron and
menopause: Does increased iron affect the health of postmenopausal
women? Antioxid Redox Signal. 11:2939–2943. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tsay J, Yang Z, Ross FP, et al: Bone loss
caused by iron overload in a murine model: Importance of oxidative
stress. Blood. 116:2582–2589. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
de Vernejoul MC, Pointillart A, Golenzer
CC, et al: Effects of iron overload on bone remodeling in pigs. Am
J Pathol. 116:377–384. 1984.PubMed/NCBI
|
9
|
Adams PC and Chakrabarti S:
Genotypic/phenotypic correlations in genetic hemochromatosis:
Evolution of diagnostic criteria. Gastroenterology. 114:319–323.
1998. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zacharski LR, Ornstein DL, Woloshin S and
Schwartz LM: Association of age, sex, and race with body iron
stores in adults: Analysis of NHANES III data. Am Heart J.
140:98–104. 2000. View Article : Google Scholar : PubMed/NCBI
|
11
|
Huang X, Xu Y and Partridge NC: Dancing
with sex hormones, could iron contribute to the gender difference
in osteoporosis? Bone. 55:458–460. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Xu YJ, Sirois P and Li K: Iron overload
plays a unique role in osteoporosis. Blood (E-letter). http://www.bloodjournal.org/content/116/14/2582.e-letters#iron-overload-plays-a-unique-role-in-osteoporosisAccessed.
May 6–2015
|
13
|
Kim BJ, Ahn SH, Bae SJ, et al: Iron
overload accelerates bone loss in healthy postmenopausal women and
middle-aged men: A 3-year retrospective longitudinal study. J Bone
Miner Res. 27:2279–2290. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kim BJ, Lee SH, Koh JM and Kim GS: The
association between higher serum ferritin level and lower bone
mineral density is prominent in women ≥45 years of age (KNHANES
2008–2010). Osteoporos Int. 24:2627–2637. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Clark SF: Iron deficiency anemia. Nutr
Clin Pract. 23:128–141. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zimmermann MB and Hurrell RF: Nutritional
iron deficiency. Lancet. 370:511–520. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yang Q, Jian J, Katz S, Abramson SB and
Huang X: 17beta-Estradiol inhibits iron hormone hepcidin through an
estrogen responsive element half-site. Endocrinology.
153:3170–3178. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hou Y, Zhang S, Wang L, et al: Estrogen
regulates iron homeostasis through governing hepatic hepcidin
expression via an estrogen response element. Gene. 511:398–403.
2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Isomura H, Fujie K, Shibata K, et al: Bone
metabolism and oxidative stress in postmenopausal rats with iron
overload. Toxicology. 197:93–100. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kalinowski DS and Richardson DR: The
evolution of iron chelators for the treatment of iron overload
disease and cancer. Pharmacol Rev. 57:547–583. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Bennett CN, Longo KA, Wright WS, et al:
Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl
Acad Sci USA. 102:3324–3329. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Almeida M, Han L, Martin-Millan M, O'Brien
CA and Manolagas SC: Oxidative stress antagonizes Wnt signaling in
osteoblast precursors by diverting beta-catenin from T cell factor-
to forkhead box O-mediated transcription. J Biol Chem.
282:27298–27305. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jia P, Xu YJ, Zhang ZL, et al: Ferric ion
could facilitate osteoclast differentiation and bone resorption
through the production of reactive oxygen species. J Orthop Res.
30:1843–1852. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu G, Men P, Kenner GH and Miller SC:
Age-associated iron accumulation in bone: implications for
postmenopausal osteoporosis and a new target for prevention and
treatment by chelation. Biometals. 19:245–251. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Liu G, Men P, Kenner GH and Miller SC:
Therapeutic effects of an oral chelator targeting skeletal tissue
damage in experimental postmenopausal osteoporosis in rats.
Hemoglobin. 32:181–190. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Maggio A, Filosa A, Vitrano A, et al: Iron
chelation therapy in thalassemia major: A systematic review with
meta-analyses of 1520 patients included on randomized clinical
trials. Blood Cells Mol Dis. 47:166–175. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Fabio G, Minonzio F, Delbini P, Bianchi A
and Cappellini MD: Reversal of cardiac complications by deferiprone
and deferoxamine combination therapy in a patient affected by a
severe type of juvenile hemochromatosis (JH). Blood. 109:362–364.
2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kalpatthi R, Peters B, Kane I, et al:
Safety and efficacy of high dose intravenous desferrioxamine for
reduction of iron overload in sickle cell disease. Pediatr Blood
Cancer. 55:1338–1342. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ishii KA, Fumoto T, Iwai K, et al:
Coordination of PGC-1beta and iron uptake in mitochondrial
biogenesis and osteoclast activation. Nat Med. 15:259–266. 2009.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Ganz T: Hepcidin, a key regulator of iron
metabolism and mediator of anemia of inflammation. Blood.
102:783–788. 2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Donovan A, Brownlie A, Zhou Y, et al:
Positional cloning of zebrafish ferroportin1 identifies a conserved
vertebrate iron exporter. Nature. 403:776–781. 2000. View Article : Google Scholar : PubMed/NCBI
|
32
|
Nemeth E, Tuttle MS, Powelson J, et al:
Hepcidin regulates cellular iron efflux by binding to ferroportin
and inducing its internalization. Science. 306:2090–2093. 2004.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Lesbordes-Brion JC, Viatte L, Bennoun M,
et al: Targeted disruption of the hepcidin 1 gene results in severe
hemochromatosis. Blood. 108:1402–1405. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Nicolas G, Bennoun M, Devaux I, et al:
Lack of hepcidin gene expression and severe tissue iron overload in
upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad
Sci USA. 98:8780–8785. 2001. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hadziahmetovic M, Song Y, Ponnuru P, et
al: Age-dependent retinal iron accumulation and degeneration in
hepcidin knockout mice. Invest Ophthalmol Vis Sci. 52:109–118.
2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Roetto A, Papanikolaou G, Politou M, et
al: Mutant antimicrobial peptide hepcidin is associated with severe
juvenile hemochromatosis. Nat Genet. 33:21–22. 2003. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ahmad KA, Ahmann JR, Migas MC, et al:
Decreased liver hepcidin expression in the Hfe knockout mouse.
Blood Cells Mol Dis. 29:361–366. 2002. View Article : Google Scholar : PubMed/NCBI
|
38
|
Guggenbuhl P, Fergelot P, Doyard M, et al:
Bone status in a mouse model of genetic hemochromatosis. Osteoporos
Int. 22:2313–2319. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Nicolas G, Viatte L, Lou DQ, et al:
Constitutive hepcidin expression prevents iron overload in a mouse
model of hemochromatosis. Nat Genet. 34:97–101. 2003. View Article : Google Scholar : PubMed/NCBI
|
40
|
Moran-Jimenez MJ, Mendez M, Santiago B, et
al: Hepcidin treatment in Hfe-/- mice diminishes plasma iron
without affecting erythropoiesis. Eur J Clin Invest. 40:511–517.
2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Gardenghi S, Ramos P, Marongiu MF, et al:
Hepcidin as a therapeutic tool to limit iron overload and improve
anemia in beta-thalassemic mice. J Clin Invest. 120:4466–4477.
2010. View
Article : Google Scholar : PubMed/NCBI
|
42
|
Andrews NC: Closing the iron gate. N Engl
J Med. 366:376–377. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ganz T and Nemeth E: The
hepcidin-ferroportin system as a therapeutic target in anemias and
iron overload disorders. Hematology Am Soc Hematol Educ Program.
2011:538–542. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Li GF, Pan YZ, Sirois P, Li K and Xu YJ:
Iron homeostasis in osteoporosis and its clinical implications.
Osteoporos Int. 23:2403–2408. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Ma Y, Xu YJ, Wang AD, Yu C, Wang B, Zhang
P and Zhang ZD: A preliminary report of expression of hepcidin gene
in SD rats osteoporosis model. Su Zhou Da Xue Zue Bao. 26:367–369.
2006.(In Chinese).
|
46
|
Zhang P, Xu YJ, Zhao DY, et al: Increased
intracellular iron and mineralization of cultured hFOB 1.19 cells
following hepcidin activation through ferroportin-1. Saudi Med J.
31:1303–1308. 2010.PubMed/NCBI
|
47
|
Li GF, Xu YJ, He YF, et al: Effect of
hepcidin on intracellular calcium in human osteoblasts. Mol Cell
Biochem. 366:169–174. 2012. View Article : Google Scholar : PubMed/NCBI
|
48
|
Xu Y, Li G, Du B, et al: Hepcidin
increases intracellular Ca2+ of osteoblast hFOB1.19
through L-type Ca2+ channels. Regul Pept. 172:58–61.
2011. View Article : Google Scholar : PubMed/NCBI
|
49
|
Xi Huang: Treatment of osteoporosis in
peri- and post-menopausal women with hepcidin. US Patent 0,204,122.
Filed. February 11–2010 issued. August 12–2010
|
50
|
De Domenico I, Lo E, Ward DM and Kaplan J:
Hepcidin-induced internalization of ferroportin requires binding
and cooperative interaction with Jak2. Proc Natl Acad Sci USA.
106:3800–3805. 2009. View Article : Google Scholar : PubMed/NCBI
|
51
|
De Domenico I, Zhang TY, Koening CL, et
al: Hepcidin mediates transcriptional changes that modulate acute
cytokine-induced inflammatory responses in mice. J Clin Invest.
120:2395–2405. 2010. View Article : Google Scholar : PubMed/NCBI
|
52
|
Bellido T, Borba VZ, Roberson P and
Manolagas SC: Activation of the Janus kinase/STAT (signal
transducer and activator of transcription) signal transduction
pathway by interleukin-6-type cytokines promotes osteoblast
differentiation. Endocrinology. 138:3666–3676. 1997. View Article : Google Scholar : PubMed/NCBI
|
53
|
Nishimura R, Moriyama K, Yasukawa K, Mundy
GR and Yoneda T: Combination of interleukin-6 and soluble
interleukin-6 receptors induces differentiation and activation of
JAK-STAT and MAP kinase pathways in MG-63 human osteoblastic cells.
J Bone Miner Res. 13:777–785. 1998. View Article : Google Scholar : PubMed/NCBI
|
54
|
Barhanpurkar AP, Gupta N, Srivastava RK,
et al: IL-3 promotes osteoblast differentiation and bone formation
in human mesenchymal stem cells. Biochem Biophys Res Commun.
418:669–675. 2012. View Article : Google Scholar : PubMed/NCBI
|
55
|
Xu Y, Zhang W, Zhang P, et al:
Downregulation of ferroportin 1 expression in hFOB1.19 osteoblasts
by hepcidin. Inflammation. 35:1058–1061. 2012. View Article : Google Scholar : PubMed/NCBI
|
56
|
Preza GC, Ruchala P, Pinon R, et al:
Minihepcidins are rationally designed small peptides that mimic
hepcidin activity in mice and may be useful for the treatment of
iron overload. J Clin Invest. 121:4880–4888. 2011. View Article : Google Scholar : PubMed/NCBI
|
57
|
Katsumata S, Tsuboi R, Uehara M and Suzuki
K: Dietary iron deficiency decreases serum osteocalcin
concentration and bone mineral density in Rats. Biosci Biotechnol
Biochem. 70:2547–2550. 2006. View Article : Google Scholar : PubMed/NCBI
|
58
|
Maurer J, Harris MM, Stanford VA, et al:
Dietary iron positively influences bone mineral density in
postmenopausal women on hormone replacement therapy. J Nutr.
135:863–869. 2005.PubMed/NCBI
|