1
|
Lim JY, Loiselle AE, Lee JS, et al:
Optimizing the osteogenic potential of adult stem cells for
skeletal regeneration. J Orthop Res. 29:1627–1633. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Gimble JM and Guilak F: Adipose-derived
adult stem cells: isolation, characterization, and differentiation
potential. Cytotherapy. 5:362–369. 2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Marx RE: Platelet-rich plasma (PRP): what
is PRP and what is not PRP? Implant Dent. 10:225–228. 2001.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Knighton DR, Hunt TK, Thakral KK and
Goodson WH III: Role of platelets and fibrin in the healing
sequence: an in vivo study of angiogenesis and collagen synthesis.
Ann Surg. 196:379–388. 1982. View Article : Google Scholar : PubMed/NCBI
|
5
|
Brass L: Understanding and evaluating
platelet function. Hematology Am Soc Hematol Educ Program.
2010:387–396. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhang N, Wu YP, Qian SJ, et al: Research
progress in the mechanism of effect of PRP in bone deficiency
healing. ScientificWorld Journal. 2013:1345822013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lenza M, Ferraz Sde B, Viola DC, et al:
Platelet-rich plasma for long bone healing. Einstein (Sao Paulo).
11:122–127. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lubkowska A, Dolegowska B and Banfi G:
Growth factor content in PRP and their applicability in medicine. J
Biol Regul Homeost Agents. 26 (2 Suppl 1):3S–22S. 2012.PubMed/NCBI
|
9
|
Lee HR, Park KM, Joung YK, et al:
Platelet-rich plasma loaded in situ-formed hydrogel enhances
hyaline cartilage regeneration by CB1 upregulation. J Biomed Mater
Res A. 100:3099–3107. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wearing SC, Hennig EM, Byrne NM, et al:
Musculoskeletal disorders associated with obesity: a biomechanical
perspective. Obes Rev. 7:239–250. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Johnstone B, Alini M, Cucchiarini M, et
al: Tissue engineering for articular cartilage repair - the state
of the art. Eur Cell Mater. 25:248–267. 2013.PubMed/NCBI
|
12
|
Ye K, Felimban R, Moulton SE, et al:
Bioengineering of articular cartilage: past, present and future.
Regen Med. 8:333–349. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rui YF, Lui PP, Lee YW and Chan KM: Higher
BMP receptor expression and BMP-2-induced osteogenic
differentiation in tendon-derived stem cells compared with
bone-marrow-derived mesenchymal stem cells. Int Orthop.
6:1099–1107. 2012. View Article : Google Scholar
|
14
|
Nagae M, Ikeda T, Mikami Y, et al:
Intervertebral disc regeneration using platelet-rich plasma and
biodegradable gelatin hydrogel microspheres. Tissue Eng.
13:147–158. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2007.
View Article : Google Scholar
|
16
|
Kock L, van Donkelaar CC and Ito K: Tissue
engineering of functional articular cartilage: the current status.
Cell Tissue Res. 347:613–627. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Johnstone B and Yoo J: Mesenchymal cell
transfer for articular cartilage repair. Expert Opin Biol Ther.
1:915–921. 2001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tollervey JR and Lunyak VV: Adult stem
cells: simply a tool for regenerative medicine or an additional
piece in the puzzle of human aging? Cell Cycle. 10:4173–4176. 2011.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Janicki P and Schmidmaier G: What should
be the characteristics of the ideal bone graft substitute?
Combining scaffolds with growth factors and/or stem cells. Injury.
42 (Suppl 2):77–81. 2011. View Article : Google Scholar
|
20
|
Lui PP, Rui YF, Ni M and Chan KM:
Tenogenic differentiation of stem cells for tendon repair - what is
the current evidence? J Tissue Eng Regen Med. 5:e144–e163. 2011.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Huang S, Tam V, Cheung KM, et al: Stem
cell-based approaches for intervertebral disc regeneration. Curr
Stem Cell Res Ther. 6:317–326. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lubis AM and Lubis VK: Adult bone marrow
stem cells in cartilage therapy. Acta Med Indones. 44:62–68.
2012.PubMed/NCBI
|
23
|
Zuk PA, Zhu M, Mizuno H, et al:
Multilineage cells from human adipose tissue: implications for
cell-based therapies. Tissue Eng. 7:211–228. 2001. View Article : Google Scholar : PubMed/NCBI
|
24
|
Casteilla L, Planat-Benard V, Bourin P, et
al: Use of adipose tissue in regenerative medicine. Transfus Clin
Biol. 18:124–128. 2011.(In French). View Article : Google Scholar : PubMed/NCBI
|
25
|
Markarian CF, Frey GZ, Silveira MD, et al:
Isolation of adipose-derived stem cells: a comparison among
different methods. Biotechnol Lett. 36:693–702. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Griffin M, Hindocha S and Khan WS:
Chondrogenic differentiation of adult MSCs. Curr Stem Cell Res
Ther. 7:260–265. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Freyria AM, Courtes S and Mallein-Gerin F:
Differentiation of adult human mesenchymal stem cells: chondrogenic
effect of BMP-2. Pathol Biol (Paris). 56:326–333. 2008.(In French).
View Article : Google Scholar : PubMed/NCBI
|
28
|
Arnott JA, Lambi AG, Mundy C, et al: The
role of connective tissue growth factor (CTGF/CCN2) in
skeletogenesis. Crit Rev Eukaryot Gene Expr. 21:43–69. 2011.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Ellman MB, An HS, Muddasani P and Im HJ:
Biological impact of the fibroblast growth factor family on
articular cartilage and intervertebral disc homeostasis. Gene.
420:82–89. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Stewart AA, Byron CR, Pondenis H and
Stewart MC: Effect of fibroblast growth factor-2 on equine
mesenchymal stem cell monolayer expansion and chondrogenesis. Am J
Vet Res. 68:941–945. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Van Osch GJ, Van Der Veen SW, Burger EH
and Verwoerd-Verhoef HL: Chondrogenic potential of in vitro
multiplied rabbit perichondrium cells cultured in alginate beads in
defined medium. Tissue Eng. 6:321–330. 2000. View Article : Google Scholar : PubMed/NCBI
|
32
|
Barry F, Boynton RE, Liu B and Murphy JM:
Chondrogenic differentiation of mesenchymal stem cells from bone
marrow: differentiation-dependent gene expression of matrix
components. Exp Cell Res. 268:189–200. 2001. View Article : Google Scholar : PubMed/NCBI
|
33
|
Mardani M, Kabiri A, Esfandiari E, et al:
The effect of platelet rich plasma on chondrogenic differentiation
of human adipose derived stem cells in Transwell culture. Iran J
Basic Med Sci. 16:1163–1169. 2013.PubMed/NCBI
|
34
|
Smyth NA, Murawski CD, Fortier LA, et al:
Platelet-rich plasma in the pathologic processes of cartilage:
review of basic science evidence. Arthroscopy. 29:1399–1409. 2013.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Anitua E, Andia I, Ardanza B, et al:
Autologous platelets as a source of proteins for healing and tissue
regeneration. Thromb Haemost. 91:4–15. 2004.PubMed/NCBI
|
36
|
Krüger JP, Freymannx U, Vetterlein S, et
al: Bioactive factors in platelet-rich plasma obtained by
apheresis. Transfus Med Hemother. 40:432–440. 2013. View Article : Google Scholar : PubMed/NCBI
|