1
|
Feigin VL, Lawes CM, Bennett DA and
Anderson CS: Stroke epidemiology: A review of population-based
studies of incidence, prevalence and case-fatality in the late 20th
century. Lancet Neurol. 2:43–53. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Green AR, Odergren T and Ashwood T: Animal
models of stroke: Do they have value for discovering
neuroprotective agents. Trend Pharmacol Sci. 24:402–408. 2003.
View Article : Google Scholar
|
3
|
Xu SY and Pan SY: The failure of animal
models of neuroprotection in acute ischemic stroke to translate to
clinical efficacy. Med Sci Monit Basic Res. 19:37–45. 2013.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Moro MA, Almeida A, Bolanos JP and
Lizasoain I: Mitochondrial respiratory chain and free radical
generation in stroke. Free Radic Biol Med. 39:1291–1304. 2005.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Martin-Romero FJ, Garcia-Martin E and
Gutierrez-Merino C: Inhibition of oxidative stress produced by
plasma membrane NADH oxidase delays low-potassium-induced apoptosis
of cerebellar granule cells. J Neurochem. 82:705–715. 2002.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Atlante A, Bobba A, Calissano P,
Passarella S and Marra E: The apoptosis/necrosis transition in
cerebellar granule cells depends on the mutual relationship of the
antioxidant and the proteolytic systems which regulate ROS
production and cytochrome c release enroute to death. J
Neurochem. 84:960–971. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Li J, Wang Y, Du L, Xu C, Cao J, Wang Q,
Liu Q and Fan F: Radiation-induced cytochrome c release and
the neuroprotective effects of the pan-caspase inhibitor z-VAD-fmk
in the hypoglossal nucleus. Exp Ther Med. 7:383–388.
2014.PubMed/NCBI
|
8
|
Kleikers PW, Wingler K, Hermans JJ,
Diebold I, Altenhöfer S, Radermacher KA, Janssen B, Görlach A and
Schmidt HH: NADPH oxidases as a source of oxidative stress and
molecular target in ischemia/reperfusion injury. J Mol Med (Berl).
90:1391–1406. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zuo L and Motherwell MS: The impact of
reactive oxygen species and genetic mitochondrial mutations in
Parkinson's disease. Gene. 532:18–23. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sochocka M, Koutsouraki ES, Gasiorowski K
and Leszek J: Vascular oxidative stress and mitochondrial failure
in the pathobiology of Alzheimer's disease: A new approach to
therapy. CNS Neurol Disord Drug Targets. 12:870–881. 2013.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Jeong H, Cohen DE, Cui L, Supinski A,
Savas JN, Mazzulli JR, Yates JR III, Bordone L, Guarente L and
Krainc D: SIRT1 mediates neuroprotection from mutant huntingtin by
activation of the TORC1 and CREB transcriptional pathway. Nat Med.
18:159–165. 2011. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Donmez G, Arun A, Chung CY, McLean PJ,
Lindquist S and Guarente L: SIRT1 protects against alpha-synuclein
aggregation by activating molecular chaperones. J Neurosci.
32:124–132. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chong ZZ, Shang YC, Wang S and Maiese K:
SIRT1: New avenues of discovery for disorders of oxidative stress.
Expert Opin Ther Targets. 16:167–178. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Nakata R, Takahashi S and Inoue H: Recent
advances in the study on resveratrol. Biol Pharm Bull. 35:273–279.
2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gruber J, Tang SY and Halliwell B:
Evidence for a trade-off between survival and fitness caused by
resveratrol treatment of Caenorhabditis elegans. Ann NY Acad
Sci. 1100:530–542. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Pasinetti GM, Wang J, Marambaud P,
Ferruzzi M, Gregor P, Knable LA and Ho L: Neuroprotective and
metabolic effects of resveratrol: Therapeutic implications for
Huntington's disease and other neurodegenerative disorders. Exp
Neurol. 232:1–6. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Brasnyó P, Molnár GA, Mohás M, Markó L,
Laczy B, Cseh J, Mikolás E, Szijártó IA, Mérei A, Halmai R,
Mészáros LG, et al: Resveratrol improves insulin sensitivity,
reduces oxidative stress and activates the Akt pathway in type 2
diabetic patients. Br J Nutr. 106:383–389. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Bradamante S, Barenghi L and Villa A:
Cardiovascular protective effects of resveratrol. Cardiovasc Drug
Rev. 22:169–188. 2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Pulsinelli WA, Brierley JB and Plum F:
Temporal profile of neuronal damage in a model of transient
forebrain ischemia. Ann Neurol. 11:491–498. 1982. View Article : Google Scholar : PubMed/NCBI
|
20
|
Nikonenko AG, Radenovic L, Andjus PR and
Skibo GG: Structural features of ischemic damage in the
hippocampus. Anat Rec (Hoboken). 292:1914–1921. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li H, Zhang Y, Yu Y, Li B, Chen Y, Wu H,
Wang J, Li J, Xiong X, He Q, Tian J, et al: Systemic revealing
pharmacological signalling pathway networks in the hippocampus of
ischaemia-reperfusion rats treated with baicalin. Evid Based
Complement Alternat Med. 2013:6307232013.PubMed/NCBI
|
22
|
Li J, Feng L, Xing Y, Wang Y, Du L, Xu C,
Cao J, Wang Q, Fan S, Liu Q and Fan F: Radioprotective and
Antioxidant effect of Resveratrol in Hippocampus by activating
SIRT1. Int J Mol Sci. 15:5928–5939. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kang Y, Jung WY, Lee H, Lee E, Kim A and
Kim BH: Expression of SIRT1 and DBC1 in gastric adenocarcinoma.
Korean J Pathol. 46:523–531. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Matsushita T, Sasaki H, Takayama K, Ishida
K, Matsumoto T, Kubo S, Matsuzaki T, Nishida K, Kurosaka M and
Kuroda R: The overexpression of SIRT1 inhibited osteoarthritic gene
expression changes induced by interleukin-1β in human chondrocytes.
J Orthop Res. 31:531–537. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chen F, Xu C, Du L, Wang Y, Cao J, Fu Y,
Guo Y, Liu Q and Fan F: Tat-SmacN7 induces radiosensitization in
cancer cells through the activation of caspases and induction of
apoptosis. Int J Oncol. 42:985–992. 2013.PubMed/NCBI
|
26
|
Fu Y, Wang Y, Du L, Xu C, Cao J, Fan T,
Liu J, Su F, Fan S, Liu Q and Fan F: Resveratrol inhibits ionising
irradiation-induced inflammation in MSCs by activating SIRT1 and
limiting NLRP-3 inflammasome activation. Int J Mol Sci.
14:14105–14118. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kitada M and Koya D: SIRT1 in Type 2
Diabetes: Mechanisms and therapeutic potential. Diabetes Metab J.
37:315–325. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Bernstein BE, Meissner A and Lander ES:
The mammalian epigenome. Cell. 128:669–681. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Vaquero A, Scher M, Erdjument-Bromage H,
Tempst P, Serrano L and Reinberg D: SIRT1 regulates the histone
methyl-transferase SUV39H1 during heterochromatin formation.
Nature. 450:440–444. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Nadtochiy SM, Redman E, Rahman I and
Brookes PS: Lysine deacetylation in ischaemic preconditioning: The
role of SIRT1. Cardiovasc Res. 89:643–649. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Shin SM, Cho IJ and Kim SG: Resveratrol
protects mitochondria against oxidative stress through
AMP-activated protein kinase-mediated glycogen synthase
kinase-3beta inhibition downstream of poly (ADP-ribose)
polymerase-LKB1 pathway. Mol Pharmacol. 76:884–895. 2009.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Ramadori G, Lee CE, Bookout AL, Lee S,
Williams KW, Anderson J, Elmquist JK and Coppari R: Brain SIRT1:
anatomical distribution and regulation byenergy availability. J
Neurosci. 28:9989–9996. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Tanno M, Sakamoto J, Miura T, Shimamoto K
and Horio Y: Nucleocytoplasmic shuttling of the
NAD+-dependent histone deacetylase SIRT1. J Biol Chem.
282:6823–6832. 2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wassmann S, Wassmann K and Nickenig G:
Modulation of oxidant and antioxidant enzyme expression and
function in vascular cells. Hypertension. 44:381–386. 2004.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Lu X, Ma L, Ruan L, Kong Y, Mou H, Zhang
Z, Wang Z, Wang JM and Le Y: Resveratrol differentially modulates
inflammatory responses of microglia and astrocytes. J
Neuroinflammation. 7:462010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Terashvili M, Pratt PF, Gebremedhin D,
Narayanan J and Harder DR: Reactive oxygen species cerebral
autoregulation in health and disease. Pediatr Clin North Am.
53:1029–1037. 2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhang F, Liu J and Shi JS:
Anti-inflammatory activities of resveratrol in the brain: Role of
resveratrol in microglial activation. Eur J Pharmacol. 636:1–7.
2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hu Y, Liu J, Wang J and Liu Q: The
controversial links among calorie restriction, SIRT1 and
resveratrol. Free Radic Biol Med. 51:250–256. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Nisoli E, Tonello C, Cardile A, Cozzi V,
Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E,
Moncada S, et al: Calorie restriction promotes mitochondrial
biogenesis byinducing the expression of eNOS. Science. 310:314–317.
2005. View Article : Google Scholar : PubMed/NCBI
|
40
|
Lagouge M, Argmann C, Gerhart-Hines Z,
Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P,
Elliott P, Geny B, et al: Resveratrol improves mitochondrial
function and protects against metabolic disease by activating SIRT1
and PGC-1alpha. Cell. 127:1109–1122. 2006. View Article : Google Scholar : PubMed/NCBI
|
41
|
Csiszar A, Labinskyy N, Pinto JT, Ballabh
P, Zhang H, Losonczy G, Pearson K, de Cabo R, Pacher P, Zhang C, et
al: Resveratrol induces mitochondrial biogenesis in endothelial
cells. Am J Physiol Heart Circ Physiol. 297:H13–H20. 2009.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Pearson KJ, Baur JA, Lewis KN, Peshkin L,
Price NL, Labinskyy N, et al: Resveratrol delays age-related
deterioration and mimics transcriptional aspects of dietary
restriction without extending life span. Cell Metab. 8:157–168.
2008.
Lu X, Ma L, Ruan L, Kong Y, Mou H, Zhang
Z, Wang Z, Wang JM and Le Y: Resveratrol differentially modulates
inflammatory responses of microglia and astrocytes. J
Neuroinflammation. 7:462010. View Article : Google Scholar : PubMed/NCBI
|