1
|
Wang M, Zhang W, Zhou Y and Zhou X:
Association between serum angiotensin-converting enzyme 2 levels
and postoperative myocardial infarction following coronary artery
bypass grafting. Exp Ther Med. 7:1721–1727. 2014.PubMed/NCBI
|
2
|
Chen G, McAlister FA, Walker RL,
Hemmelgarn BR and Campbell NR: Cardiovascular outcomes in
Framingham participants with diabetes: The importance of blood
pressure. Hypertension. 57:891–897. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
No authors listed. Hypertension in
Diabetes study (HDS): II. increased risk of cardiovascular
complications in hypertensive type 2 diabetic patients. J
Hypertens. 11:319–325. 1993. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tamura T, Said S, Harris J, Lu W and
Gerdes AM: Reverse remodeling of cardiac myocyte hypertrophy in
hypertension and failure by targeting of the renin-angiotensin
system. Circulation. 102:253–259. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Takatsu M, Hattori T, Murase T, Ohtake M,
Kato M, Nashima K, Nakashima C, Takahashi K, Ito H, Niinuma K,
Aritomi S, et al: Comparison of the effects of cilnidipine and
amlodipine on cardiac remodeling and diastolic dysfunction in Dahl
salt-sensitive rats. J Hypertens. 30:1845–1855. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yin M, Westenbrink B, Meissner M, van
Gilst WH and de Boer RA: Variable effects of anti-diabetic drugs in
animal models of myocardial ischemia and remodeling: A
translational perspective for the cardiologist. Int J Cardiol.
169:385–393. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Csiszar A, Toth J, Peti-Peterdi J and
Ungvari Z: The aging kidney: Role of endothelial oxidative stress
and inflammation. Acta Physiol Hung. 94:107–115. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Liu L, Liu Y, Qi B, Wu Q, Li Y and Wang Z:
Nicorandil attenuates endothelial VCAM-1 expression via thioredoxin
production in diabetic rats induced by streptozotocin. Mol Med Rep.
9:2227–2232. 2014.PubMed/NCBI
|
9
|
Suzuki H, Sakamoto M, Hayashi T, Iuchi H,
Ohashi K, Isaka T, Sakamoto N, Kayama Y, Tojo K, Yoshimura M and
Utsunomiya K: Effects of co-administration of candesartan with
pioglitazone on inflammatory parameters in hypertensive patients
with type 2 diabetes mellitus: A preliminary report. Cardiovasc
Diabetol. 12:712013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Baradaran A, Nasri H and Rafieian-Kopaei
M: Oxidative stress and hypertension: Possibility of hypertension
therapy with antioxidants. J Res Med Sci. 19:358–367.
2014.PubMed/NCBI
|
11
|
Pan HZ, Zhang L, Guo MY, Sui H, Li H, Wu
WH, Qu NQ, Liang MH and Chang D: The oxidative stress status in
diabetes mellitus and diabetic nephropathy. Acta Diabetol.
47:(Suppl 1). 71–76. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Nakamura A, Shikata K, Nakatou T, Kitamura
T, Kajitani N, Ogawa D and Makino H: Combination therapy with an
angiotensin-converting-enzyme inhibitor and an angiotensin II
receptor antagonist ameliorates microinflammation and oxidative
stress in patients with diabetic nephropathy. J Diabetes Investig.
4:195–201. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sato-Horiguchi C, Ogawa D, Wada J,
Tachibana H, Kodera R, Eguchi J, Nakatsuka A, Terami N, Shikata K
and Makino H: Telmisartan attenuates diabetic nephropathy by
suppressing oxidative stress in db/db mice. Nephron Exp Nephrol.
121:e97–e108. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Guo Y, Liu Y and Wang Y: Beneficial effect
of lycopene on anti-diabetic nephropathy through diminishing
inflammatory response and oxidative stress. Food Funct.
6:1150–1156. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ji X, Naito Y, Weng H, Ma X, Endo K, Kito
N, Yanagawa N, Yu Y, Li J and Iwai N: Renoprotective mechanisms of
pirfenidone in hypertension-induced renal injury: Through
anti-fibrotic and anti-oxidative stress pathways. Biomed Res.
34:309–319. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Molavi B, Rassouli N, Bagwe S and Rasouli
N: A review of thiazolidinediones and metformin in the treatment of
type 2 diabetes with focus on cardiovascular complications. Vasc
Health Risk Manag. 3:967–973. 2007.PubMed/NCBI
|
17
|
Zhou G, Cheung AK, Liu X and Huang Y:
Valsartan slows the progression of diabetic nephropathy in db/db
mice via a reduction in podocyte injury, and renal oxidative stress
and inflammation. Clin Sci (Lond). 126:707–720. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Luo Y, Yang SK, Zhou X, Wang M, Tang D,
Liu FY, Sun L and Xiao L: Use of Ophiocordyceps sinensis
(syn. Cordyceps sinensis) combined with
angiotensin-converting enzyme inhibitors (ACEI)/angiotensin
receptor blockers (ARB) versus ACEI/ARB alone in the treatment of
diabetic kidney disease: A meta-analysis. Ren Fail. 37:614–634.
2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chandran G, Sirajudeen KN, Yusoff NS,
Swamy M and Samarendra MS: Effect of the antihypertensive drug
enalapril on oxidative stress markers and antioxidant enzymes in
kidney of spontaneously hypertensive rat. Oxid Med Cell Longev.
2014:6085122014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kim J, Shon E, Kim CS and Kim JS: Renal
podocyte injury in a rat model of type 2 diabetes is prevented by
metformin. Exp Diabetes Res. 2012:2108212012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Alhaider AA, Korashy HM, Sayed-Ahmed MM,
Mobark M, Kfoury H and Mansour MA: Metformin attenuates
streptozotocin-induced diabetic nephropathy in rats through
modulation of oxidative stress genes expression. Chem Biol
Interact. 192:233–242. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Drzewoski J and Zurawska-Klis M: Effect of
gliclazide modified release on adiponectin, interleukin-6, and
tumor necrosis factor-alpha plasma levels in individuals with type
2 diabetes mellitus. Curr Med Res Opin. 22:1921–1926. 2002.
View Article : Google Scholar
|
23
|
Zhang SQ, Sun YT, Xu TH, Zhang XF, Liu YZ,
Ma MJ, Wang LN and Yao L: Protective effect of metformin on renal
injury of C57BL/6J mouse treated with high fat diet. Pharmazie.
69:904–908. 2014.PubMed/NCBI
|
24
|
Li MH, Zhang YJ, Yu YH, Yang SH, Iqbal J,
Mi QY, Li B, Wang ZM, Mao WX, Xie HG and Chen SL: Berberine
improves pressure overload-induced cardiac hypertrophy and
dysfunction through enhanced autophagy. Eur J Pharmacol. 728:67–76.
2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhao HP, Hong Y, Xie JD, Xie XR, Wang J
and Fan JB: Effect of berberine on left ventricular remodeling in
renovascular hypertensive rats. Yao Xue Xue Bao. 42:336–341.
2007.(In Chinese). PubMed/NCBI
|
26
|
Hong Y, Hui SC, Chan TY and Hou JY: Effect
of berberine on regression of pressure-overload induced cardiac
hypertrophy in rats. Am J Chin Med. 30:589–599. 2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Cheng F, Wang Y, Li J, Su C, Wu F, Xia WH,
Yang Z, Yu BB, Qiu YX and Tao J: Berberine improves endothelial
function by reducing endothelial microparticles-mediated oxidative
stress in humans. Int J Cardiol. 167:936–942. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Li Z, Geng YN, Jiang JD and Kong WJ:
Antioxidant and anti-inflammatory activities of berberine in the
treatment of diabetes mellitus. Evid Based Complement Alternat Med.
2014:2892642014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chang W, Chen L and Hatch GM: Berberine as
a therapy for type 2 diabetes and its complications: From mechanism
of action to clinical studies. Biochem Cell Biol. 2014 Dec 1;1–8,
[Epub ahead of print]. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bhutada P, Mundhada Y, Bansod K, Tawari S,
Patil S, Dixit P, Umathe S and Mundhada D: Protection of
cholinergic and antioxidant system contributes to the effect
ofberberine ameliorating memory dysfunction in rat model of
streptozotocin-induced diabetes. Behav Brain Res. 220:30–41. 2011.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Moghaddam HK, Baluchnejadmojarad T,
Roghani M, Khaksari M, Norouzi P, Ahooie M and Mahboobi F:
Berberine ameliorates oxidative stress and astrogliosis in the
hippocampus of STZ-induced diabetic rats. Mol Neurobiol.
49:820–826. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ni WJ, Ding HH and Tang LQ: Berberine as a
promising anti-diabetic nephropathy drug: An analysis of its
effects and mechanisms. Eur J Pharmacol. 760:103–112. 2015.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Alter ML, Kretschmer A, Von Websky K,
Tsuprykov O, Reichetzeder C, Simon A, Stasch JP and Hocher B: Early
urinary and plasma biomarkers for experimental diabetic
nephropathy. Clin Lab. 58:659–671. 2012.PubMed/NCBI
|
34
|
Chen Q, He F, Feng X, Luo Z, Zhang J,
Zhang L, Wang Y and Tong J: Correlation of Doppler parameters with
renal pathology: A study of 992 patients. Exp Ther Med. 7:439–442.
2014.PubMed/NCBI
|
35
|
Crutchley TA, Pearce JD, Craven TE,
Stafford JM, Edwards MS and Hansen KJ: Clinical utility of the
resistive index in atherosclerotic renovascular disease. J Vasc
Surg. 49:148–155.e3. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Nosadini R, Velussi M, Brocco E,
Abaterusso C, Carraro A, Piarulli F, Morgia G, Satta A, Faedda R,
Abhyankar A, Luthman H and Tonolo G: Increased renal arterial
resistance predicts the course of renal function in type 2 diabetes
with microalbuminuria. Diabetes. 55:234–239. 2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hou YJ, Zhao YY, Xiong B, Cui XS, Kim NH,
Xu YX and Sun SC: Mycotoxin-containing diet causes oxidative stress
in the mouse. PLoS One. 8:e603742013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang M, Feng L, Gu J, Ma L, Qin D, Wu C
and Jia X: The attenuation of Moutan Cortex on oxidative stress for
renal injury in AGEs-induced mesangial cell dysfunction and
streptozotocin-induced diabetic nephropathy rats. Oxid Med Cell
Longev. 2014:4638152014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kawai T, Kamide K, Onishi M,
Yamamoto-Hanasaki H, Baba Y, Hongyo K, Shimaoka I, Tatara Y, Takeya
Y, Ohishi M and Rakugi H: Usefulness of the resistive index in
renal Doppler ultrasonography as an indicator of vascular damage in
patients with risks of atherosclerosis. Nephrol Dial Transplant.
26:3256–3262. 2011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Alderman MH, Cohen H and Madhavan S:
Diabetes and cardiovascular events in hypertensive patients.
Hypertension. 33:1130–1134. 1999. View Article : Google Scholar : PubMed/NCBI
|
41
|
Impellizzeri D, Esposito E, Attley J and
Cuzzocrea S: Targeting inflammation: New therapeutic approaches in
chronic kidney disease (CKD). Pharmacol Res. 81:91–102. 2014.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Tripepi G, Mallamaci F and Zoccali C:
Inflammation markers, adhesion molecules and all-cause and
cardiovascular mortality in patients with ESRD: Searching for the
best risk marker by multivariate modeling. J Am Soc Nephrol.
16:(Suppl 1). 83–88. 2005. View Article : Google Scholar
|
43
|
Lee HJ, Jeong KH, Kim YG, Moon JY, Lee SH,
Ihm CG, Sung JY and Lee TW: Febuxostat ameliorates diabetic renal
injury in a streptozotocin-induced diabetic rat model. Am J
Nephrol. 40:56–63. 2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Bae EH, Kim IJ, Joo SY, Kim EY, Choi JS,
Kim CS, Ma SK, Lee J and Kim SW: Renoprotective effects of the
direct renin inhibitor aliskiren on gentamicin-induced
nephrotoxicity in rats. J Renin Angiotensin Aldosterone Syst.
15:348–361. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Šilhavý J, Zídek V, Landa V, Šimáková M,
Mlejnek P, Oliyarnyk O, Malínská H, Kazdová L, Mancini M and
Pravenec M: Rosuvastatin ameliorates inflammation, renal fat
accumulation, and kidney injury in transgenic spontaneously
hypertensive rats expressing human C-reactive protein. Physiol Res.
64:295–301. 2015.PubMed/NCBI
|
46
|
Park JW, Bae EH, Kim IJ, Ma SK, Choi C,
Lee J and Kim SW: Renoprotective effects of paricalcitol on
gentamicin-induced kidney injury in rats. Am J Physiol Renal
Physiol. 298:F301–F313. 2010. View Article : Google Scholar : PubMed/NCBI
|
47
|
Shibata R, Sato K, Pimentel DR, Takemura
Y, Kihara S, Ohashi K, Funahashi T, Ouchi N and Walsh K:
Adiponectin protects against myocardial ischemia reperfusion injury
through AMPK- and COX-2-dependent mechanisms. Nat Med.
11:1096–1103. 2005. View
Article : Google Scholar : PubMed/NCBI
|
48
|
Oliveira CS, Saddi-Rosa P, Crispim F,
Canani LH, Gerchman F, Giuffrida FM, Vieira JG, Velho G and Reis
AF: Association of ADIPOQ variants, total and high molecular weight
adiponectin levels with coronary artery disease in diabetic and
non-diabetic Brazilian subjects. J Diabetes Complications.
26:94–98. 2012. View Article : Google Scholar : PubMed/NCBI
|
49
|
Kopf S, Oikonomou D, von Eynatten M,
Kieser M, Zdunek D, Hess G, Morcos M, Forsblom C, Bierhaus A, Groop
PH, Nawroth PP and Humpert PM: Urinary excretion of high molecular
weight adiponectin is an independent predictor of decline of renal
function in type 2 diabetes. Acta Diabetol. 51:479–489.
2014.PubMed/NCBI
|
50
|
Wu YH, Chuang SY, Hong WC, Lai YJ, Chang
GJ and Pang JH: Berberine reduces leukocyte adhesion to
LPS-stimulated endothelial cells and VCAM-1 expression both in
vivo and in vitro. Int J Immunopathol Pharmacol.
25:741–750. 2012.PubMed/NCBI
|
51
|
Choo BK and Roh SS: Berberine protects
against esophageal mucosal damage in reflux esophagitis by
suppressing proinflammatory cytokines. Exp Ther Med. 6:663–670.
2013.PubMed/NCBI
|
52
|
Liu WH, Hei ZQ, Nie H, Tang FT, Huang HQ,
Li XJ, Deng YH, Chen SR, Guo FF, Huang WG, Chen FY and Liu PQ:
Berberine ameliorates renal injury in streptozotocin-induced
diabetic rats by suppression of both oxidative stress and aldose
reductase. Chin Med J (Engl). 121:706–712. 2008.PubMed/NCBI
|
53
|
Wu D, Wen W, Qi CL, Zhao RX, Lü JH, Zhong
CY and Chen YY: Ameliorative effect of berberine on renal damage in
rats with diabetes induced by high-fat diet and streptozotocin.
Phytomedicine. 19:712–718. 2012. View Article : Google Scholar : PubMed/NCBI
|