1
|
Jemal A, Siegel R, Ward E, et al: Cancer
statistics, 2008. CA Cancer J Clin. 58:71–96. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kessler P, Grabenbauer G, Leher A,
Bloch-Birkholz A, Vairaktaris E and Neukam FW: Neoadjuvant and
adjuvant therapy in patients with oral squamous cell carcinoma
long-term survival in a prospective, non-randomized study. Br J
Oral Maxillofac Surg. 46:1–5. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sankaranarayanan R, Masuyer E, Swaminathan
R, Ferlay J and Whelan S: Head and neck cancer: A global
perspective on epidemiology and prognosis. Anticancer Res.
18:4779–4786. 1998.PubMed/NCBI
|
5
|
de Maria S, Lo Muzio L, Braca A, et al:
Survivin promoter-31 G/C polymorphism in oral cancer cell lines.
Oncol Lett. 2:935–939. 2011.PubMed/NCBI
|
6
|
Liu Y, Zha L, Li B, Zhang L, Yu T and Li
L: Correlation between superoxide dismutase 1 and 2 polymorphisms
and susceptibility to oral squamous cell carcinoma. Exp Ther Med.
7:171–178. 2014.PubMed/NCBI
|
7
|
Wang Y, Long L, Li T, et al: Polymorphisms
of microRNA-binding sites in integrin genes are associated with
oral squamous cell carcinoma susceptibility and progression. Tohoku
J Exp Med. 233:33–41. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhong F, Yang XC, Bu LX, Li NY and Chen
WT: Single nucleotide polymorphisms in the u-PA gene are related to
susceptibility to oral tongue squamous cell carcinoma in the
Northern Chinese Han population. Asian Pac J Cancer Prev.
14:781–784. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hengartner MO: The biochemistry of
apoptosis. Nature. 407:770–776. 2000. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Siegel RM: Caspases at the crossroads of
immune-cell life and death. Nat Rev Immunol. 6:308–317. 2006.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Stupack DG: Caspase-8 as a therapeutic
target in cancer. Cancer Lett. 332:133–140. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Grenet J, Teitz T, Wei T, Valentine V and
Kidd VJ: Structure and chromosome localization of the human CASP8
gene. Gene. 226:225–232. 1999. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nunez G, Benedict MA, Hu Y and Inohara N:
Caspases: The proteases of the apoptotic pathway. Oncogene.
17:3237–3245. 1998. View Article : Google Scholar : PubMed/NCBI
|
14
|
Frank B, Hemminki K, Wappenschmidt B, et
al: Association of the CASP10 V410I variant with reduced familial
breast cancer risk and interaction with the CASP8 D302H variant.
Carcinogenesis. 27:606–609. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Palanca Suela S, Esteban Cardenosa E,
Barragán González E, et al: CASP8 D302H polymorphism delays the age
of onset of breast cancer in BRCA1 and BRCA2 carriers. Breast
Cancer Res Treat. 119:87–93. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yang C, Liu HZ and Fu ZX: PEG-liposomal
oxaliplatin induces apoptosis in human colorectal cancer cells via
Fas/FasL and caspase-8. Cell Biol Int. 36:289–296. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Engel C, Versmold B, Wappenschmidt B, et
al: Association of the variants CASP8 D302H and CASP10 V410I with
breast and ovarian cancer risk in BRCA1 and BRCA2 mutation
carriers. Cancer Epidemiol Biomarkers Prev. 19:2859–2868. 2010.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Lubahn J, Berndt SI, Jin CH, et al:
Association of CASP8 D302H polymorphism with reduced risk of
aggressive prostate carcinoma. Prostate. 70:646–653.
2010.PubMed/NCBI
|
19
|
Bethke L, Sullivan K, Webb E, et al: CASP8
D302H and meningioma risk: An analysis of five case-control series.
Cancer Lett. 273:312–315. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Bethke L, Sullivan K, Webb E, et al: The
common D302H variant of CASP8 is associated with risk of glioma.
Cancer Epidemiol Biomarkers Prev. 17:987–989. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sun T, Gao Y, Tan W, et al: A
six-nucleotide insertion-deletion polymorphism in the CASP8
promoter is associated with susceptibility to multiple cancers. Nat
Genet. 39:605–613. 2007. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Barrett JH, Iles MM, Harland M, et al:
GenoMel Consortium: Genome-wide association study identifies three
new melanoma susceptibility loci. Nat Genet. 43:1108–1113. 2011.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Abnet CC, Wang Z, Song X, et al: Genotypic
variants at 2q33 and risk of esophageal squamous cell carcinoma in
China: A meta-analysis of genome-wide association studies. Hum Mol
Genet. 21:2132–2141. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sergentanis TN and Economopoulos KP:
Association of two CASP8 polymorphisms with breast cancer risk: A
meta-analysis. Breast Cancer Res Treat. 120:229–234. 2010.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Pindborg JJ, Reichart PA, Smith CJ and van
der Waal I: Histological Typing of Cancer and Precancer of the Oral
Mucosa (2nd). Berlin: Springer-Verlag. 1997. View Article : Google Scholar
|
26
|
Green FL: AJCC Cancer Staging Manual
(6th). Berlin Heidelberg: Springer-Verlag. 2002. View Article : Google Scholar
|
27
|
Miller SA, Dykes DD and Polesky HF: A
simple salting out procedure for extracting DNA from human
nucleated cells. Nucleic Acids Res. 16:12151988. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hashemi M, Eskandari-Nasab E, Fazaeli A,
et al: Bi-directional PCR allele-specific amplification (bi-PASA)
for detection of caspase-8 −652 6 N ins/del promoter polymorphism
(rs3834129) in breast cancer. Gene. 505:176–179. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hu Z, Li C, Chen K, et al: Single
nucleotide polymorphisms in selected apoptotic genes and
BPDE-induced apoptotic capacity in apparently normal primary
lymphocytes: A genotype-phenotype correlation analysis. J Cancer
Epidemiol. 2008:1479052008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Shi YY and He L: SHEsis, a powerful
software platform for analyses of linkage disequilibrium, haplotype
construction and genetic association at polymorphism loci. Cell
Res. 15:97–98. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lewontin R: On measures of gametic
disequilibrium. Genetics. 120:849–852. 1988.PubMed/NCBI
|
32
|
Hudson RR: The sampling distribution of
linkage disequilibrium under an infinite allele model without
selection. Genetics. 109:611–631. 1985.PubMed/NCBI
|
33
|
Jemal A: Global burden of cancer:
Opportunities for prevention. Lancet. 380:1797–1799. 2012.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Chawla JP, Iyer N, Soodan KS, Sharma A,
Khurana SK and Priyadarshni P: Role of miRNA in cancer diagnosis,
prognosis, therapy and regulation of its expression by Epstein-Barr
virus and human papillomaviruses: With special reference to oral
cancer. Oral Oncol. 51:731–737. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Srinivas PR, Kramer BS and Srivastava S:
Trends in biomarker research for cancer detection. Lancet Oncol.
2:698–704. 2001. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang M and Zhang Z, Tian Y, Shao J and
Zhang Z: A six-nucleotide insertion-deletion polymorphism in the
CASP8 promoter associated with risk and progression of bladder
cancer. Clin Cancer Res. 15:2567–2572. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Evan GI and Vousden KH: Proliferation,
cell cycle and apoptosis in cancer. Nature. 411:342–348. 2001.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Lowe SW and Lin AW: Apoptosis in cancer.
Carcinogenesis. 21:485–495. 2000. View Article : Google Scholar : PubMed/NCBI
|
39
|
Andersen MH, Becker JC and Straten P:
Regulators of apoptosis: suitable targets for immune therapy of
cancer. Nat Rev Drug Discov. 4:399–409. 2005. View Article : Google Scholar : PubMed/NCBI
|
40
|
Hsing AW, Sakoda LC, Rashid A, et al:
Variants in inflammation genes and the risk of biliary tract
cancers and stones: A population-based study in China. Cancer Res.
68:6442–6452. 2008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Srivastava A, Srivastava K, Pandey SN,
Choudhuri G and Mittal B: Single-nucleotide polymorphisms of DNA
repair genes OGG1 and XRCC1: Association with gallbladder cancer in
North Indian population. Ann Surg Oncol. 16:1695–1703. 2009.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Srivastava K, Srivastava A, Pandey SN,
Kumar A and Mittal B: Functional polymorphisms of the
cyclooxygenase (PTGS2) gene and risk for gallbladder cancer in a
North Indian population. J Gastroenterol. 44:774–780. 2009.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Srivastava K, Srivastava A and Mittal B:
Caspase-8 polymorphisms and risk of gallbladder cancer in a
northern Indian population. Mol Carcinog. 49:684–692.
2010.PubMed/NCBI
|
44
|
Li C, Lu J, Liu Z, et al: The
six-nucleotide deletion/insertion variant in the CASP8 promoter
region is inversely associated with risk of squamous cell carcinoma
of the head and neck. Cancer Prev Res (Phila). 3:246–253. 2010.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Frank B, Rigas SH, Bermejo JL, et al: The
CASP8 −652 6 N del promoter polymorphism and breast cancer risk: A
multicenter study. Breast Cancer Res Treat. 111:139–144. 2008.
View Article : Google Scholar : PubMed/NCBI
|
46
|
De Vecchi G, Verderio P, Pizzamiglio S, et
al: Evidences for association of the CASP8 −652 6 N del promoter
polymorphism with age at diagnosis in familial breast cancer cases.
Breast Cancer Res Treat. 113:607–608. 2009. View Article : Google Scholar : PubMed/NCBI
|
47
|
Haiman CA, Garcia RR, Kolonel LN,
Henderson BE, Wu AH and Le Marchand L: A promoter polymorphism in
the CASP8 gene is not associated with cancer risk. Nat Genet.
40:259–260. 2008. View Article : Google Scholar : PubMed/NCBI
|