1
|
Yuan X, Wang Y, Du D, Hu Z, Xu M, Xu M and
Liu Z: The effects of the combination of sodium ferulate and
oxymatrine on lipopolysaccharide-induced acute lung injury in mice.
Inflammation. 35:1161–1168. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wu WS, Chou MT, Chao CM, Chang CK, Lin MT
and Chang CP: Melatonin reduces acute lung inflammation, edema and
hemorrhage in heatstroke rats. Acta Pharmacol Sin. 33:775–782.
2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Matsuyama H, Amaya F and Hashimoto S, Ueno
H, Beppu S, Mizuta M, Shime N, Ishizaka A and Hashimoto S: Acute
lung inflammation and ventilator-induced lung injury caused by ATP
via the P2Y receptors, an experimental study. Respir Res. 9:792008.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Wyncoll DL and Evans TW: Acute respiratory
distress syndrome. Lancet. 354:497–501. 1999. View Article : Google Scholar : PubMed/NCBI
|
5
|
Abraham E: Neutrophils and acute lung
injury. Critical Care Medicine. 31:S195–S199. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ware LB and Matthay MA: The acute
respiratory distress syndrome. N Engl J Med. 342:1334–1349. 2000.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Atabai K and Matthay MA: The pulmonary
physician in critical care. Histopathology. Thorax. 57:452–458.
2002. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rubenfeld GD, Caldwell E, Peabody E,
Weaver J, Diane P, Martin DP, Neff M, Stern EJ and Hudson LD:
Incidence and outcomes of acute lung injury. N Engl J Med.
353:1685–1693. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Knight PR, Druskovich G, Tait AR and
Johnson KJ: The role of neutrophils, oxidants and proteases in the
pathogenesis of acid pulmonary injury. Anesthesiology. 77:772–778.
1992. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yunhe F, Bo L, Xiaosheng F, Fengyang L,
Dejie L, Zhicheng L, Depeng L, Yongguo C, Xichen Z, Naisheng Z and
Zhengtao Y: The effect of magnolol on the Toll-like receptor
4/nuclear factor kappaB signaling pathway in
lipopolysaccharide-induced acute lung injury in mice. Eur J
Pharmacol. 689:255–261. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Szarka RJ, Wang N, Gordon L, Nation PN and
Smith RH: A murine model of pulmonary damage induced by
lipopolysaccharide via intranasal instillation. J Immunol Methods.
202:49–57. 1997. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ulich TR, Yin S, Remick DG, Russell D,
Eisenberg SP and Kohno T: Intratracheal administration of endotoxin
and cytokines IV. Histopathology. Am J Pathol. 142:1335–1338.
1993.PubMed/NCBI
|
13
|
Zhang X, Huang H, Yang T, Ye Y, Shan J,
Yin Z and Luo L: Chlorogenic acid protects mice against
lipopolysaccharide-induced acute lung injury. Injury. 41:746–752.
2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sibille Y and Reynolds HY: Macrophages and
polymorphonuclear neutrophils in lung defense and injury. Am Rev
Respir Dis. 141:471–501. 1990. View Article : Google Scholar : PubMed/NCBI
|
15
|
Matthay MA and Zimmerman GA: Acute lung
injury and the acute respiratory distress syndrome: Four decades of
inquiry into pathogenesis and rational management. Am J Respir Cell
Mol Biol. 33:319–327. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Edem VF, Kosoko A, Akinyoola SB, Owoeye O,
Rahamon SK and Arinola OG: Plasma antioxidant enzymes, lipid
peroxidation and hydrogen peroxide in wistar rats exposed to
Dichlorvos insecticide. Archives of Applied Science Research.
4:1778–1781. 2012.
|
17
|
Huang CH, Yang ML, Tsai CH, Li YC, Lin YJ
and Kuan YH: Ginkgo biloba leaves extract (EGb 761) attenuates
lipopolysaccharide-induced acute lung injury via inhibition of
oxidative stress and NF-kappaB-dependent matrix metalloproteinase-9
pathway. Phytomedicine. 20:303–309. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Li YC, Peng SZ, Chen HM, Zhang FX, Xu PP,
Xie JH, He JJ, Chen JN, Lai XP and Su ZR: Oral administration of
patchouli alcohol isolated from Pogostemonis Herba augments
protection against influenza viral infection in mice. Int
Immunopharmacol. 12:294–301. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Li CW, Wu XL, Zhao XN, Su ZQ, Chen HM,
Wang XF, Zhang XJ, Zeng HF, Chen JN, Li YC and Su ZR:
Anti-inflammatory property of the ethanol extract of the root and
rhizome of Pogostemon cablin (Blanco) Benth.
ScientificWorldJournal. 2013:Article ID 434151. 2013.
|
20
|
Li YC, Xian YF, Ip SP, Su ZR, Su JY, He
JJ, Xie QF, Lai XP and Lin ZX: Anti-inflammatory activity of
patchouli alcohol isolated from Pogostemonis Herba in animal
models. Fitoterapia. 82:1295–1301. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kim HW, Cho SJ, Kim BY, Cho SI and Kim YK:
Pogostemon cablin as ROS Scavenger in Oxidant-induced Cell
death of human neuroglioma cells. Evid Based Complement Alternat
Med. 7:239–247. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liu X, Fan R, Zhang Y and Zhu M: Study on
antimicrobial activities of extracts from Pogostemon cablin
(Blanco) Benth. Food Sci Technol. 34:220–227. 2009.
|
23
|
Lu TC, Liao JC, Huang TH, Lin YC, Liu CY,
Chiu YJ and Peng WH: Analgesic and anti-inflammatory activities of
the methanol extract from Pogostemon cablin. Evid Based
Complement Alternat Med. 2011:6717412011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Xian YF, Li YC, Ip SP, Lin ZX, Lai XP and
Su ZR: Anti-inflammatory effect of patchouli alcohol isolated from
Pogostemonis Herba in LPS-stimulated RAW264.7 macrophages. Exp Ther
Med. 2:545–550. 2011.PubMed/NCBI
|
25
|
Huang XW, Bai L, Xu FH and Wu YJ:
Inhibitory activities of patchouli alcohol on neurotoxicity of
β-amyloid peptide. Jie Fang Jun Yi Xue Za Zhi. 24:338–340.
2008.
|
26
|
Liao JB, Wu DW, Peng SZ, Xie JH, Li YC, Su
JY, Chen JN and Su ZR: Immunomodulatory Potential of patchouli
alcohol isolated from Pogostemon cablin (Blanco) Benth
(Lamiaceae) in mice. Tropical Journal of Pharmaceutical Research.
12:559–565. 2013.
|
27
|
Mehla K, Balwani S, Agrawal A and Ghosh B:
Ethyl gallate attenuates acute lung injury through Nrf2 signaling.
Biochimie. 95:2404–2414. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yeh CH, Yang JJ, Yang ML, Li YC and Kuan
YH: Rutin decreases lipopolysaccharide-induced acute lung injury
via inhibition of oxidative stress and the MAPK-NF-κB pathway. Free
Radic Biol Med. 69:249–257. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bai GZ, Yu HT, Ni YF, Li XF, Zhang ZP, Su
K, Lei J, Liu BY, Ke CK, Zhong DX, et al: Shikonin attenuates
lipopolysaccharide-induced acute lung injury in mice. J Surg Res.
182:303–311. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhong WT, Jiang LX, Wei JY, Qiao AN, Wei
MM, Soromou LW, Xie XX, Zhou X, Ci XX and Wang DC: Protective
effect of esculentoside A on lipopolysaccharide-induced acute lung
injury in mice. J Surg Res. 185:364–372. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sun Q, Chen L, Gao M, Jiang W, Shao F, Li
J, Wang J, Kou J and Yu B: Ruscogenin inhibits
lipopolysaccharide-induced acute lung injury in mice, involvement
of tissue factor, inducible NO synthase and nuclear factor
(NF)-kappaB. Int Immunopharmacol. 12:88–93. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gao M, Chen L, Yu H, Sun Q, Kou J and Yu
B: Diosgenin down-regulates NF-kappaB p65/p50 and p38MAPK pathways
and attenuates acute lung injury induced by lipopolysaccharide in
mice. Int Immunopharmacol. 15:240–245. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Liang XM, Guo GF, Huang XH, Duan WL and
Zeng ZL: Isotetrandrine protects against lipopolysaccharide-induced
acute lung injury by suppression of mitogen-activated protein
kinase and nuclear factor-kappa B. J Surg Res. 187:596–604. 2014.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Xu GL, Yao L, Rao SY, Gong ZN, Zhang SQ
and Yu SQ: Attenuation of acute lung injury in mice by oxymatrine
is associated with inhibition of phosphorylated p38
mitogen-activated protein kinase. J Ethnopharmacol. 98:177–183.
2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhang B, Liu ZY, Li YY, Luo Y, Liu ML,
Dong HY, Wang YX, Liu Y, Zhao PT, Jin FG and Li ZC:
Antiinflammatory effects of matrine in LPS-induced acute lung
injury in mice. Eur J Pharm Sci. 44:573–579. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Faffe DS, Seidl VR, Chagas PS, Gonçalves
de Moraes VL, Capelozzi VL, Rocco PR and Zin WA: Respiratory
effects of lipopolysaccharide-induced inflammatory lung injury in
mice. Eur Respir J. 15:85–91. 2000. View Article : Google Scholar : PubMed/NCBI
|
37
|
Perina DG: Noncardiogenic pulmonary edema.
Emerg Med Clin North Am. 21:385–393. 2003. View Article : Google Scholar : PubMed/NCBI
|
38
|
Beck BD, Brain JD and Bohannon DE: An in
vivo hamster bioassay to assess the toxicity of particulates for
the lungs. Toxicol Appl Pharmacol. 66:9–29. 1982. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang X, Song K, Xiong H, Li H, Chu X and
Deng X: Protective effect of florfenicol on acute lung injury
induced by lipopolysaccharide in mice. Int Immunopharmacol.
9:1525–1529. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Klebanoff SJ: Myeloperoxidase: friend and
foe. J Leukoc Biol. 77:598–625. 2005. View Article : Google Scholar : PubMed/NCBI
|
41
|
Loria V, Dato I, Graziani F and Biasucci
LM: Myeloperoxidase: A new biomarker of inflammation in ischemic
heart disease and acute coronary syndromes. Mediators Inflamm.
2008:1356252008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Alfakry H, Sinisalo J, Paju S, Nieminen
MS, Valtonen V, Tervahartiala T, Pussinen PJ and Sorsa T: The
association of serum neutrophil markers and acute coronary
syndrome. Scand J Immunol. 76:181–187. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Moraes TJ, Zurawska JH and Downey GP:
Neutrophil granule contents in the pathogenesis of lung injury.
Curr Opin Hematol. 13:21–27. 2006. View Article : Google Scholar : PubMed/NCBI
|
44
|
Yao HY, Zhang LH, Shen J, Shen HJ, Jia YL,
Yan XF and Xie QM: Cyptoporus polysaccharide prevents
lipopolysaccharide-induced acute lung injury associated with
down-regulating Toll-like receptor 2 expression. J Ethnopharmacol.
137:1267–1274. 2011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Bhatia M and Moochhala S: Role of
inflammatory mediators in the pathophysiology of acute respiratory
distress syndrome. J Pathol. 202:145–156. 2004. View Article : Google Scholar : PubMed/NCBI
|
46
|
Goodman RB, Pugin J, Lee JS and Matthay
MA: Cytokine-mediated inflammation in acute lung injury. Cytokine
Growth Factor Rev. 14:523–535. 2003. View Article : Google Scholar : PubMed/NCBI
|
47
|
Cribbs SK, Matthay MA and Martin GS: Stem
cells in sepsis and acute lung injury. Crit Care Med. 38:2379–2385.
2010. View Article : Google Scholar : PubMed/NCBI
|
48
|
Giebelen IA, van Westerloo DJ, LaRosa GJ,
de Vos AF and van der Poll T: Local stimulation of alpha7
cholinergic receptors inhibits LPS-induced TNF-alpha release in the
mouse lung. Shock. 28:700–703. 2007.PubMed/NCBI
|
49
|
Liang X, Wang RS, Wang F, Liu S, Guo F,
Sun L, Wang YJ, Sun YX and Chen XL: Sodium butyrate protects
against severe burn-induced remote acute lung injury in rats. PLoS
One. 8:e687862013. View Article : Google Scholar : PubMed/NCBI
|
50
|
Leser HG, Gross V, Scheibenbogen C,
Heinisch A, Salm R, Lausen M, Rückauer K, Andreesen R, Farthmann EH
and Schölmerich J: Elevation of serum interleukin-6 concentration
precedes acute-phase response and reflects severity in acute
pancreatitis. Gastroenterology. 101:782–785. 1991.PubMed/NCBI
|
51
|
Gow AJ, Farkouh CR, Munson DA, Posencheg
MA and Ischiropoulos H: Biological significance of nitric
oxide-mediated protein modifications. Am J Physiol Lung Cell Mol
Physiol. 287:L262–268. 2004. View Article : Google Scholar
|
52
|
Thannickal VJ and Fanburg BL: Reactive
oxygen species in cell signaling. Am J Physiol Lung Cell Mol
Physiol. 279:L1005–1028. 2000.
|
53
|
Chevalier G, Ricard AC and Manca D:
Age-related variations of lipid peroxidation in cadmium-treated
rats. Toxicol Ind Health. 10:43–51. 1994. View Article : Google Scholar : PubMed/NCBI
|
54
|
Manca D, Ricard AC, Trottier B and
Chevalier G: Studies on lipid peroxidation in rat tissues following
administration of low and moderate doses of cadmium chloride.
Toxicology. 67:303–323. 1991. View Article : Google Scholar : PubMed/NCBI
|
55
|
Draper H and Hadley M: Malondialdehyde
determination as index of lipid peroxidation. Methods Enzymol.
186:421–431. 1990. View Article : Google Scholar : PubMed/NCBI
|
56
|
Vijayaraj P, Muthukumar K, Sabarirajan J
and Nachiappan V: Antihyperlipidemic activity of Cassia auriculata
flowers in triton WR 1339 induced hyperlipidemic rats. Exp Toxicol
Pathol. 65:135–141. 2013. View Article : Google Scholar : PubMed/NCBI
|
57
|
Kareem MA, Gadhamsetty SK, Shaik AH,
Prasad EM and Kodidhela LD: Protective effect of nutmeg aqueous
extract against experimentally-induced hepatotoxicity and oxidative
stress in rats. J Ayurveda Integr Med. 4:216–223. 2013. View Article : Google Scholar : PubMed/NCBI
|
58
|
Zhang R, Yan P, Li Y, Xiong L, Gong X and
Peng C: A pharmacokinetic study of patchouli alcohol after a single
oral administration of patchouli alcohol or patchouli oil in rats.
Eur J Drug Metab Pharmacokinet March. 10:2015.(Epub ahead of
print).
|
59
|
Bang L, Ourisson G and Teisseire P:
Hydroxylation of patchoulol by rabbits. Histopathology. Tetrahedron
Letters. 26:2211–2214. 1975. View Article : Google Scholar
|
60
|
Bang L, Ourisson G and Teisseire P:
Hydroxylation of patchoulol by rabbits. Histopathology. Tetrahedron
Letters. 16:2211–2214. 1975. View Article : Google Scholar
|