1
|
Bułdak Ł, Łabuzek K, Bułdak RJ, Kozłowski
M, Machnik G, Liber S, Suchy D, Duława-Bułdak A and Okopień B:
Metformin affects macrophages' phenotype and improves the activity
of glutathione peroxidase, superoxide dismutase, catalase and
decreases malondialdehyde concentration in a partially
AMPK-independent manner in LPS-stimulated human
monocytes/macrophages. Pharmacol Rep. 66:418–429. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Van Greevenbroek MM, Schalkwijk CG and
Stehouwer CD: Obesity-associated low-grade inflammation in type 2
diabetes mellitus: Causes and consequences. Neth J Med. 71:174–187.
2013.PubMed/NCBI
|
3
|
Jin C and Flavell RA: Innate sensors of
pathogen and stress: Linking inflammation to obesity. J Allergy
Clin Immunol. 132:287–294. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kaptoge S, Seshasai SR, Gao P, Freitag DF,
Butterworth AS, Borglykke A, Di Angelantonio E, Gudnason V, Rumley
A, Lowe GD, et al: Inflammatory cytokines and risk of coronary
heart disease: New prospective study and updated meta-analysis. Eur
Heart J. 35:578–589. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Savoia C and Schiffrin EL: Vascular
inflammation in hypertension and diabetes: Molecular mechanisms and
therapeutic interventions. Clin Sci (Lond). 112:375–384. 2007.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Ridker PM: High-sensitivity C-reactive
protein: Potential adjunct for global risk assessment in the
primary prevention of cardiovascular disease. Circulation.
103:1813–1818. 2001. View Article : Google Scholar : PubMed/NCBI
|
7
|
Madej A, Bołdys A, Bułdak L, Labuzek K,
Basiak M and Okopień B: Short-term antihypertensive therapy lowers
the C-reactive protein level. Postepy Hig Med Dosw (Online).
66:78–84. 2012.PubMed/NCBI
|
8
|
Ridker PM, Danielson E, Fonseca FA, Genest
J, Gotto AM Jr, Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ,
MacFadyen JG, et al: JUPITER Study Group: Rosuvastatin to prevent
vascular events in men and women with elevated C-reactive protein.
N Engl J Med. 359:2195–2207. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Deo SH, Fisher JP, Vianna LC, Kim A,
Chockalingam A, Zimmerman MC, Zucker IH and Fadel PJ: Statin
therapy lowers muscle sympathetic nerve activity and oxidative
stress in patients with heart failure. Am J Physiol Heart Circ
Physiol. 303:H377–H385. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pignatelli P, Carnevale R, Di Santo S,
Bartimoccia S, Nocella C, Vicario T, Loffredo L, Angelico F and
Violi F: Rosuvastatin reduces platelet recruitment by inhibiting
NADPH oxidase activation. Biochem Pharmacol. 84:1635–1642. 2012.
View Article : Google Scholar : PubMed/NCBI
|
11
|
UK Prospective Diabetes Study (UKPDS)
Group: Effect of intensive blood-glucose control with metformin on
complications in overweight patients with type 2 diabetes (UKPDS
34). Lancet. 352:854–865. 1998. View Article : Google Scholar : PubMed/NCBI
|
12
|
Prasad K and Dhar I: Oxidative stress as a
mechanism of added sugar-induced cardiovascular disease. Int J
Angiol. 23:217–226. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Costa A, Scholer-Dahirel A and
Mechta-Grigoriou F: The role of reactive oxygen species and
metabolism on cancer cells and their microenvironment. Semin Cancer
Biol. 25:23–32. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Park JG and Oh GT: The role of peroxidases
in the pathogenesis of atherosclerosis. BMB Rep. 44:497–505. 2011.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Okopień B, Krysiak R, Kowalski J, Madej A,
Belowski D, Zieliński M and Herman ZS: Monocyte release of tumor
necrosis factor-alpha and interleukin-1beta in primary type IIa and
IIb dyslipidemic patients treated with statins or fibrates. J
Cardiovasc Pharmacol. 46:377–386. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Labuzek K, Liber S, Gabryel B, Adamczyk J
and Okopień B: Metformin increases phagocytosis and acidifies
lysosomal/endosomal compartments in AMPK-dependent manner in rat
primary microglia. Naunyn Schmiedebergs Arch Pharmacol.
381:171–186. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bułdak Ł, Łabuzek K, Bułdak RJ, Machnik G,
Bołdys A and Okopień B: Exenatide (a GLP-1 agonist) improves the
antioxidative potential of in vitro cultured human
monocytes/macrophages. Naunyn Schmiedebergs Arch Pharmacol.
388:905–919. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Rebelato E, Mares-Guia TR, Graciano MF,
Labriola L, Britto LR, Garay-Malpartida HM, Curi R, Sogayar MC and
Carpinelli AR: Expression of NADPH oxidase in human pancreatic
islets. Life Sci. 91:244–249. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kasperczyk A, Machnik G, Dobrakowski M,
Sypniewski D, Birkner E and Kasperczyk S: Gene expression and
activity of antioxidant enzymes in the blood cells of workers who
were occupationally exposed to lead. Toxicology. 301:79–84. 2012.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Strzalka-Mrozik B, Prudlo L, Kimsa MW,
Kimsa MC, Kapral M, Nita M and Mazurek U: Quantitative analysis of
SOD2, ALDH1A1 and MGST1 messenger ribonucleic acid in anterior lens
epithelium of patients with pseudoexfoliation syndrome. Mol Vis.
19:1341–1349. 2013.PubMed/NCBI
|
21
|
Rice P, Longden I and Bleasby A: EMBOSS
The European Molecular Biology Open Software Suite. Trends Genet.
16:276–277. 2000. View Article : Google Scholar : PubMed/NCBI
|
22
|
Piwkowska A, Rogacka D, Jankowski M,
Dominiczak MH, Stepiński JK and Angielski S: Metformin induces
suppression of NAD(P)H oxidase activity in podocytes. Biochem
Biophys Res Commun. 393:268–273. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Batchuluun B, Inoguchi T, Sonoda N, Sasaki
S, Inoue T, Fujimura Y, Miura D and Takayanagi R: Metformin and
liraglutide ameliorate high glucose-induced oxidative stress via
inhibition of PKC-NAD(P)H oxidase pathway in human aortic
endothelial cells. Atherosclerosis. 232:156–164. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Batandier C, Guigas B, Detaille D, El-Mir
MY, Fontaine E, Rigoulet M and Leverve XM: The ROS production
induced by a reverse-electron flux at respiratory-chain complex 1
is hampered by metformin. J Bioenerg Biomembr. 38:33–42. 2006.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Lu W, Ogasawara MA and Huang P: Models of
reactive oxygen species in cancer. Drug Discov Today Dis Models.
4:67–73. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Krifka S, Hiller KA, Spagnuolo G, Jewett
A, Schmalz G and Schweikl H: The influence of glutathione on redox
regulation by antioxidant proteins and apoptosis in macrophages
exposed to 2-hydroxyethyl methacrylate (HEMA). Biomaterials.
33:5177–5186. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Perrotta I, Perrotta E, Sesti S, Cassese M
and Mazzulla S: MnSOD expression in human atherosclerotic plaques:
An immunohistochemical and ultrastructural study. Cardiovasc
Pathol. 22:428–437. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ari E, Kaya Y, Demir H, Cebi A, Alp HH,
Bakan E, Odabasi D and Keskin S: Oxidative DNA damage correlates
with carotid artery atherosclerosis in hemodialysis patients.
Hemodial Int. 15:453–459. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Fukai T and Ushio-Fukai M: Superoxide
dismutases: Role in redox signaling, vascular function and,
diseases. Antioxid Redox Signal. 15:1583–1606. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Cheng F, Torzewski M, Degreif A, Rossmann
H, Canisius A and Lackner KJ: Impact of glutathione peroxidase-1
deficiency on macrophage foam cell formation and proliferation:
Implications for atherogenesis. PLoS One. 8:e720632013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Rizos CV and Elisaf MS: Metformin and
cancer. Eur J Pharmacol. 705:96–108. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Szuchman-Sapir A, Etzman M and Tamir S:
Human atherosclerotic plaque lipid extract impairs the antioxidant
defense capacity of monocytes. Biochem Biophys Res Commun.
423:884–888. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Góth L and Nagy T: Inherited catalase
deficiency: Is it benign or a factor in various age related
disorders? Mutat Res. 753:147–154. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Nivet-Antoine V, Labat C, El Shamieh S,
Dulcire X, Cottart CH, Beaudeux JL, Zannad F, Visvikis-Siest S and
Benetos A: Relationship between catalase haplotype and arterial
aging. Atherosclerosis. 227:100–105. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lee S: Monocytes: A novel drug delivery
system targeting atherosclerosis. J Drug Target. 22:138–145. 2014.
View Article : Google Scholar : PubMed/NCBI
|