1
|
Sprung CL, Peduzzi PN, Shatney CH, Schein
RM, Wilson MF, Sheagren JN and Hinshaw LB: Impact of encephalopathy
on mortality in the sepsis syndrome. The Veterans Administration
Systemic Sepsis Cooperative Study Group. Crit Care Med. 18:801–806.
1990. View Article : Google Scholar : PubMed/NCBI
|
2
|
Eidelman LA, Putterman D, Putterman C and
Sprung CL: The spectrum of septic encephalopathy. Definitions,
etiologies, and mortalities. JAMA. 275:470–473. 1996. View Article : Google Scholar : PubMed/NCBI
|
3
|
Straver JS, Keunen RW, Stam CJ, Tavy DL,
de Ruiter GR, Smith SJ, Thijs LG, Schellens RG and Gielen G:
Nonlinear analysis of EEG in septic encephalopathy. Neurol Res.
20:100–106. 1998.PubMed/NCBI
|
4
|
Schraag S: Studying septic encephalopathy:
What animal models can predict. Intensive Care Med. 29:667–668.
2003.PubMed/NCBI
|
5
|
Eggers V, Fügener K, Hein OV,
Rommelspacher H, Heyes MP, Kox WJ and Spies CD: Antibiotic-mediated
release of tumour necrosis factor alpha and norharman in patients
with hospital-acquired pneumonia and septic encephalopathy.
Intensive Care Med. 30:1544–1551. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Angel MJ and Young GB: Metabolic
encephalopathies. Neurol Clin. 29:837–882. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Koo DJ, Jackman D, Chaudry IH and Wang P:
Adrenal insufficiency during the late stage of polymicrobial
sepsis. Crit Care Med. 29:618–622. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Tsao N, Hsu HP, Wu CM, Liu CC and Lei HY:
Tumour necrosis factor-alpha causes an increase in blood-brain
barrier permeability during sepsis. J Med Microbiol. 50:812–821.
2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Basler T, Meier-Hellmann A, Bredle D and
Reinhart K: Amino acid imbalance early in septic encephalopathy.
Intensive Care Med. 28:293–298. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Deng YY, Fang M, Zhu GF, Zhou Y and Zeng
HK: Role of microglia in the pathogenesis of sepsis-associated
encephalopathy. CNS Neurol Disord Drug Targets. 12:720–725. 2013.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Munford RS and Pugin J: Normal responses
to injury prevent systemic inflammation and can be
immunosuppressive. Am J Respir Crit Care Med. 163:316–321. 2001.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Oberholzer A, Oberholzer C and Moldawer
LL: Sepsis syndromes: Understanding the role of innate and acquired
immunity. Shock. 16:83–96. 2001. View Article : Google Scholar : PubMed/NCBI
|
13
|
Abraham E and Singer M: Mechanisms of
sepsis-induced organ dysfunction. Crit Care Med. 35:2408–2416.
2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Rittirsch D, Flierl MA and Ward PA:
Harmful molecular mechanisms in sepsis. Nat Rev Immunol. 8:776–787.
2008. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Luyt CE, Combes A, Deback C,
Aubriot-Lorton MH, Nieszkowska A, Trouillet JL, Capron F, Agut H,
Gibert C and Chastre J: Herpes simplex virus lung infection in
patients undergoing prolonged mechanical ventilation. Am J Respir
Crit Care Med. 175:935–942. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kollef KE, Schramm GE, Wills AR, Reichley
RM, Micek ST and Kollef MH: Predictors of 30-day mortality and
hospital costs in patients with ventilator-associated pneumonia
attributed to potentially antibiotic-resistant gram-negative
bacteria. Chest. 134:281–287. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Limaye AP, Kirby KA, Rubenfeld GD,
Leisenring WM, Bulger EM, Neff MJ, Gibran NS, Huang ML, Hayes Santo
TK, Corey L and Boeckh M: Cytomegalovirus reactivation in
critically ill immunocompetent patients. JAMA. 300:413–422. 2008.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Schwartz M and Baruch K: The resolution of
neuroinflammation in neurodegeneration: Leukocyte recruitment via
the choroid plexus. EMBO J. 33:7–22. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tian L, Ma L, Kaarela T and Li Z:
Neuroimmune crosstalk in the central nervous system and its
significance for neurological diseases. J Neuroinflammation.
9:1552012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Neumann H: Control of glial immune
function by neurons. Glia. 36:191–199. 2001. View Article : Google Scholar : PubMed/NCBI
|
21
|
Levy MM, Fink MP, Marshall JC, Abraham E,
Angus D, Cook D, Cohen J, Opal SM, Vincent JL and Ramsay G:
International Sepsis Definitions Conference: 2001
SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions
Conference. Intensive Care Med. 29:530–538. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Cotena S and Piazza O: Sepsis-associated
encephalopathy. Transl Med UniSa. 2:20–27. 2012.PubMed/NCBI
|
23
|
Dal-Pizzol F, Tomasi CD and Ritter C:
Septic encephalopathy: Does inflammation drive the brain crazy? Rev
Bras Psiquiatr. 36:251–258. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Dellinger RP, Levy MM, Rhodes A, Annane D,
Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke
R, et al: Surviving Sepsis Campaign Guidelines Committee including
the Pediatric Subgroup: Surviving sepsis campaign: International
guidelines for management of severe sepsis and septic shock: 2012.
Crit Care Med. 41:580–637. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Karmen A, Worblewski F and Landue JS:
Transaminases activity in human blood. J Clin Invest. 34:126–131.
1955. View Article : Google Scholar : PubMed/NCBI
|
26
|
Milbrandt EB and Angus DC:
Bench-to-bedside review: Critical illness-associated cognitive
dysfunction - mechanisms, markers, and emerging therapeutics. Crit
Care. 10:2382006. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Ebersoldt M, Sharshar T and Annane D:
Sepsis-associated delirium. Intensive Care Med. 33:941–950. 2007.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhang LN, Wang XT, Ai YH, Guo QL, Huang L,
Liu ZY and Yao B: Epidemiological features and risk factors of
sepsis-associated encephalopathy in intensive care unit patients:
2008–2011. Chin Med J (Engl). 125:828–831. 2012.PubMed/NCBI
|
29
|
Zauner C, Gendo A, Kramer L, Kranz A,
Grimm G and Madl C: Metabolic encephalopathy in critically ill
patients suffering from septic or nonseptic multiple organ failure.
Crit Care Med. 28:1310–1315. 2000. View Article : Google Scholar : PubMed/NCBI
|
30
|
Taylor SL, Morgan DL, Denson KD, Lane MM
and Pennington LR: A comparison of the Ranson, Glasgow, and APACHE
II scoring systems to a multiple organ system score in predicting
patient outcome in pancreatitis. Am J Surg. 189:219–222. 2005.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Bone RC, Sprung CL and Sibbald WJ:
Definitions for sepsis and organ failure. Crit Care Med.
20:724–726. 1992. View Article : Google Scholar : PubMed/NCBI
|
32
|
Babior BM: NADPH oxidase: An update.
Blood. 93:1464–1476. 1999.PubMed/NCBI
|
33
|
Wang CX and Shuaib A: Involvement of
inflammatory cytokines in central system injury. Prog Neurobiol.
67:161–172. 2002. View Article : Google Scholar : PubMed/NCBI
|
34
|
Choi SH, Lee DY, Kim SU and Jin BK:
Thrombin-induced oxidative stress contributes to the death of
hippocampal neurons in vivo: Role of microglial NADPH oxidase. J
Neurosci. 25:4082–4090. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sprung CL, Cerra FB, Freund HR, Schein RM,
Konstantinides FN, Marcial EH and Pena M: Amino acid alterations
and encephalopathy in the sepsis syndrome. Crit Care Med.
19:753–757. 1991. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kadoi Y and Saito S: An alteration in the
gamma-aminobutyric acid receptor system in experimentally induced
septic shock in rats. Crit Care Med. 24:298–305. 1996. View Article : Google Scholar : PubMed/NCBI
|
37
|
Nguyen DN, Spapen H, Su F, Schiettecatte
J, Shi L, Hachimi-Idrissi S and Huyghens L: Elevated serum levels
of S-100beta protein and neuron-specific enolase are associated
with brain injury in patients with severe sepsis and septic shock.
Crit Care Med. 34:1967–1974. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Piazza O, Cotena S, De Robertis E, Caranci
F and Tufano R: Sepsis associated encephalopathy studied by MRI and
cerebral spinal fluid S100B measurement. Neurochem Res.
34:1289–1292. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Piazza O, Russo E, Cotena S, Esposito G
and Tufano R: Elevated S100B levels do not correlate with the
severity of encephalopathy during sepsis. Br J Anaesth. 99:518–521.
2007. View Article : Google Scholar : PubMed/NCBI
|
40
|
van den Boogaard M, Ramakers BP, van Alfen
N, van der Werf SP, Fick WF, Hoedemaekers CW, Verbeek MM,
Schoonhoven L, van der Hoeven JG and Pickkers P:
Endotoxemia-induced inflammation and the effect on the human brain.
Crit Care. 14:R812010. View
Article : Google Scholar : PubMed/NCBI
|
41
|
Omari KM and Dorovini-Zis K: CD40
expressed by human brain endothelial cells regulates
CD4+ T cell adhesion to endothelium. J Neuroimmunol.
134:166–178. 2003. View Article : Google Scholar : PubMed/NCBI
|
42
|
Sankowski R, Mader S and Valdés-Ferrer SI:
Systemic inflammation and the brain: novel roles of genetic,
molecular, and environmental cues as drivers of neurodegeneration.
Front Cell Neurosci. 9:282015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hotchkiss RS, Tinsley KW, Swanson PE,
Schmieg RE Jr, Hui JJ, Chang KC, Osborne DF, Freeman BD, Cobb JP,
Buchman TG and Karl IE: Sepsis-induced apoptosis causes progressive
profound depletion of B and CD4+ T lymphocytes in
humans. J Immunol. 166:6952–6963. 2001. View Article : Google Scholar : PubMed/NCBI
|
44
|
Roth G, Moser B, Krenn C, Brunner M,
Haisjackl M, Almer G, Gerlitz S, Wolner E, Boltz-Nitulescu G and
Ankersmit HJ: Susceptibility to programmed cell death in
T-lymphocytes from septic patients: A mechanism for lymphopenia and
Th2 predominance. Biochem Biophys Res Commun. 308:840–846. 2003.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Boomer JS, To K, Chang KC, Takasu O,
Osborne DF, Walton AH, Bricker TL, Jarman SD II, Kreisel D,
Krupnick AS, et al: Immunosuppression in patients who die of sepsis
and multiple organ failure. JAMA. 306:2594–2605. 2011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Sunkara B, Bheemreddy S, Lorber B, Lephart
PR, Hayakawa K, Sobel JD, Kaye KS and Marchaim D: Group B
Streptococcus infections in non-pregnant adults: The role of
immunosuppression. Int J Infect Dis. 16:e182–e186. 2012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ferguson NR, Galley HF and Webster NR: T
helper cell subset ratios in patients with severe sepsis. Intensive
Care Med. 25:106–109. 1999. View Article : Google Scholar : PubMed/NCBI
|
48
|
Cheadle WG, Pemberton RM, Robinson D,
Livingston DH, Rodriguez JL and Polk HC Jr: Lymphocyte subset
responses to trauma and sepsis. J Trauma. 35:844–849. 1993.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Wakefield CH, Carey PD, Foulds S, Monson
JR and Guillou PJ: Changes in major histocompatibility complex
class II expression in monocytes and T cells of patients developing
infection after surgery. Br J Surg. 80:205–209. 1993. View Article : Google Scholar : PubMed/NCBI
|
50
|
Chalifour A, Jeannin P, Gauchat JF,
Blaecke A, Malissard M, N'Guyen T, Thieblemont N and Delneste Y:
Direct bacterial protein PAMP recognition by human NK cells
involves TLRs and triggers alpha-defensin production. Blood.
104:1778–1783. 2004. View Article : Google Scholar : PubMed/NCBI
|
51
|
Andaluz-Ojeda D, Iglesias V, Bobillo F,
Almansa R, Rico L, Gandía F, Loma AM, Nieto C, Diego R, Ramos E, et
al: Early natural killer cell counts in blood predict mortality in
severe sepsis. Crit Care. 15:R2432011. View Article : Google Scholar : PubMed/NCBI
|
52
|
Anduluz-Ojeda D, Iglesias V, Bobillo F,
Almansa R, Rico L, Gandía F, Loma AM, Nieto C, Diego R, Ramos E, et
al: Early natural killer cell counts in blood predict mortality in
severe sepsis. Crit Care. 15:R2432011. View Article : Google Scholar : PubMed/NCBI
|
53
|
Markwart R, Condotta SA, Requardt RP,
Borken F, Schubert K, Weigel C, Bauer M, Griffith TS, Förster M,
Brunkhorst FM, et al: Immunosuppression after sepsis: Systemic
inflammation and sepsis induce a loss of naïve T-cells but no
enduring cell-autonomous defects in T-cell function. PLoS One.
9:e1150942014. View Article : Google Scholar : PubMed/NCBI
|
54
|
de Pablo R, Monserrat J, Reyes E,
Diaz-Martin D, Zapata Rodriguez M, Carballo F, de la Hera A, Prieto
A and Alvarez-Mon M: Mortality in patients with septic shock
correlates with anti-inflammatory but not proinflammatory
immunomodulatory molecules. J Intensive Care Med. 26:125–132. 2011.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Menges T, Engel J, Welters I, Wagner RM,
Little S, Ruwoldt R, Wollbrueck M and Hempelmann G: Changes in
blood lymphocyte populations after multiple trauma: Association
with posttraumatic complications. Crit Care Med. 27:733–740. 1999.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Sarlis NJ, Chanock SJ and Nieman LK:
Cortisolemic indices predict severe infections in Cushing syndrome
due to ectopic production of adrenocorticotropin. J Clin Endocrinol
Metab. 85:42–7. 2000. View Article : Google Scholar : PubMed/NCBI
|
57
|
Toft P, Hokland M, Hansen TG and Tønnesen
E: Changes in lymphocyte subpopulations and adhesion/activation
molecules following endotoxemia and major surgery. APMIS.
103:261–266. 1995. View Article : Google Scholar : PubMed/NCBI
|
58
|
Lemaire LC, van Deventer SJ, van Lanschot
JJ, Meenan J and Gouma DJ: Phenotypical characterization of cells
in the thoracic duct of patients with and without systemic
inflammatory response syndrome and multiple organ failure. Scand J
Immunol. 47:69–75. 1998. View Article : Google Scholar : PubMed/NCBI
|