Differential effects of MTSS1 on invasion and proliferation in subtypes of non-small cell lung cancer cells

  • Authors:
    • Dong‑Jin Ling
    • Zhong‑Shu Chen
    • Qian‑De Liao
    • Jian‑Xiong Feng
    • Xue‑Yu Zhang
    • Ta‑Yao Yin
  • View Affiliations

  • Published online on: May 24, 2016     https://doi.org/10.3892/etm.2016.3382
  • Pages: 1225-1231
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Non-small cell lung cancer (NSCLC) accounts for >80% of all cases of lung cancer and can be divided into lung adenocarcinoma (LAC), large-cell carcinoma (LCC), and squamous cell carcinoma (SCC). Accumulating evidence suggests that MTSS1, which is a newly discovered protein associated with tumor progression and metastasis, may have differential roles in cancer malignancy. As it has been demonstrated that MTSS1 is overexpressed in NSCLC and may be an independent prognostic factor in patients with SCC, the present study explored the differential roles of MTSS1 in the invasion and proliferation of different subtypes of NSCLC. Stable overexpression and knockdown of MTSS1 was performed in human NSCLC H920 (LAC), H1581 (LCC) and SW900 cell lines (SCC), and western blot, cell invasion, proliferation and FAK activity analyses were used to investigate the effects. Overexpression of MTSS1 enhanced the invasion and proliferation abilities of H920 and H1581 cells, and these effects were abolished by treatment with selective FAK inhibitor 14, which did not affect the expression of MTSS1. Notably, overexpression of MTSS1 inhibited invasion and proliferation in SW900 cells, and this effect was enhanced by the selective FAK inhibitor. Knockdown of MTSS1 decreased the invasion and proliferation abilities of H920 and H1581 cells, whereas knockdown increased invasion and proliferation in SW900 cells. Furthermore, while overexpression of MTSS1 induced FAK phosphorylation and activity in H920 and H1581 cells, MTSS1 overexpression inhibited FAK phosphorylation/activity in SW900 cells. Knockdown of MTSS1 decreased FAK phosphorylation/activity in H920 and H1581 cells, whereas knockdown increased these processes in SW900 cells. To the best of our knowledge, the present study was the first to demonstrate that MTSS1 has differential roles in various subtypes of NSCLC, acting via a FAK‑dependent mechanism. The results indicated that MTSS1 may enhance invasion and proliferation in LAC and LCC cells, whereas MTS11 inhibits these processes in SCC cells. These findings provide novel insight into the functional role of MTSS1 in cancer and may help elucidate therapeutic strategies for the treatment of various types of cancer.
View Figures
View References

Related Articles

Journal Cover

August-2016
Volume 12 Issue 2

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Ling DJ, Chen ZS, Liao QD, Feng JX, Zhang XY and Yin TY: Differential effects of MTSS1 on invasion and proliferation in subtypes of non-small cell lung cancer cells. Exp Ther Med 12: 1225-1231, 2016.
APA
Ling, D., Chen, Z., Liao, Q., Feng, J., Zhang, X., & Yin, T. (2016). Differential effects of MTSS1 on invasion and proliferation in subtypes of non-small cell lung cancer cells. Experimental and Therapeutic Medicine, 12, 1225-1231. https://doi.org/10.3892/etm.2016.3382
MLA
Ling, D., Chen, Z., Liao, Q., Feng, J., Zhang, X., Yin, T."Differential effects of MTSS1 on invasion and proliferation in subtypes of non-small cell lung cancer cells". Experimental and Therapeutic Medicine 12.2 (2016): 1225-1231.
Chicago
Ling, D., Chen, Z., Liao, Q., Feng, J., Zhang, X., Yin, T."Differential effects of MTSS1 on invasion and proliferation in subtypes of non-small cell lung cancer cells". Experimental and Therapeutic Medicine 12, no. 2 (2016): 1225-1231. https://doi.org/10.3892/etm.2016.3382