Altered hippocampal microRNA expression profiles in neonatal rats caused by sevoflurane anesthesia: MicroRNA profiling and bioinformatics target analysis
- Authors:
- Published online on: June 13, 2016 https://doi.org/10.3892/etm.2016.3452
- Pages: 1299-1310
-
Copyright: © Ye et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
Although accumulating evidence has suggested that microRNAs (miRNAs) have a serious impact on cognitive function and are associated with the etiology of several neuropsychiatric disorders, their expression in sevoflurane‑induced neurotoxicity in the developing brain has not been characterized. In the present study, the miRNAs expression pattern in neonatal hippocampus samples (24 h after sevoflurane exposure) was investigated and 9 miRNAs were selected, which were associated with brain development and cognition in order to perform a bioinformatic analysis. Previous microfluidic chip assay had detected 29 upregulated and 24 downregulated miRNAs in the neonatal rat hippocampus, of which 7 selected deregulated miRNAs were identified by the quantitative polymerase chain reaction. A total of 85 targets of selected deregulated miRNAs were analyzed using bioinformatics and the main enriched metabolic pathways, mitogen‑activated protein kinase and Wnt pathways may have been involved in molecular mechanisms with regard to neuronal cell body, dendrite and synapse. The observations of the present study provided a novel understanding regarding the regulatory mechanism of miRNAs underlying sevoflurane‑induced neurotoxicity, therefore benefitting the improvement of the prevention and treatment strategies of volatile anesthetics related neurotoxicity.