1
|
Walkey AJ, Summer R, Ho V and Alkana P:
Acute respiratory distress syndrome: Epidemiology and management
approaches. Clin Epidemiol. 4:159–169. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Rosanna DP and Salvatore C: Reactive
oxygen species, inflammation and lung diseases. Curr Pharm Des.
18:3889–3900. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Park HS, Kim SR and Lee YC: Impact of
oxidative stress on lung diseases. Respirology. 14:27–38. 2009.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Crimi E, Sica V, Williams-Ignarro S, Zhang
H, Slutsky AS, Ignarro LJ and Napoli C: The role of oxidative
stress in adult critical care. Free Radic Biol Med. 40:398–406.
2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bowler RP, Velsor LW, Duda B, Chan ED,
Abraham E, Ware LB, Matthay MA and Day BJ: Pulmonary edema fluid
antioxidants are depressed in acute lung injury. Crit Care Med.
31:2309–2315. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Xu JN, Zeng C, Zhou Y, Peng C, Zhou YF and
Xue Q: Metformin inhibits StAR expression in human endometriotic
stromal cells via AMPK-mediated disruption of CREB-CRTC2 complex
formation. J Clin Endocrinol Metab. 99:2795–2803. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Jeong HW, Hsu KC, Lee JW, Ham M, Huh JY,
Shin HJ, Kim WS and Kim JB: Berberine suppresses proinflammatory
responses through AMPK activation in macrophages. Am J Physiol
Endocrinol Metab. 296:E955–E964. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Han Y, Jiang C, Tang J, Wang C, Wu P,
Zhang G, Liu W, Jamangulova N, Wu X and Song X: Resveratrol reduces
morphine tolerance by inhibiting microglial activation via AMPK
signalling. Eur J Pain. 18:1458–1470. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yee SW, Chen L and Giacomini KM: The role
of ATM in response to metformin treatment and activation of AMPK.
Nat Genet. 44:359–360. 2012. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Su RY, Chao Y, Chen TY, Huang DY and Lin
WW: 5-Aminoimidazole-4-carboxamide riboside sensitizes TRAIL- and
TNF{alpha}-induced cytotoxicity in colon cancer cells through
AMP-activated protein kinase signaling. Mol Cancer Ther.
6:1562–1571. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhao X, Zmijewski JW, Lorne E, Liu G, Park
YJ, Tsuruta Y and Abraham E: Activation of AMPK attenuates
neutrophil proinflammatory activity and decreases the severity of
acute lung injury. Am J Physiol Lung Cell Mol Physiol.
295:L497–L504. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang G, Liu L, Zhang Y, Han D, Liu J, Xu
J, Xie X, Wu Y, Zhang D, Ke R, et al: Activation of PPARγ
attenuates LPS-induced acute lung injury by inhibition of
HMGB1-RAGE levels. Eur J Pharmacol. 726:27–32. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Fukai T and Ushio-Fukai M: Superoxide
dismutases: Role in redox signaling, vascular function and
diseases. Antioxid Redox Signal. 15:1583–1606. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
St-Pierre J, Drori S, Uldry M, Silvaggi
JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, et al:
Suppression of reactive oxygen species and neurodegeneration by the
PGC-1 transcriptional coactivators. Cell. 127:397–408. 2006.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Tasaka S, Amaya F, Hashimoto S and
Ishizaka A: Roles of oxidants and redox signaling in the
pathogenesis of acute respiratory distress syndrome. Antioxid Redox
Signal. 10:739–753. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kim MY, Lim JH, Youn HH, Hong YA, Yang KS,
Park HS, Chung S, Ko SH, Shin SJ, Choi BS, et al: Resveratrol
prevents renal lipotoxicity and inhibits mesangial cell
glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1 α axis
in db/db mice. Diabetologia. 56:204–217. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tamaki N, Cristina Orihuela-Campos R,
Inagaki Y, Fukui M, Nagata T and Ito HO: Resveratrol improves
oxidative stress and prevents the progression of periodontitis via
the activation of the Sirt1/AMPK and the Nrf2/antioxidant defense
pathways in a rat periodontitis model. Free Radic Biol Med.
75:222–229. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Marmolino D, Manto M, Acquaviva F, Vergara
P, Ravella A, Monticelli A and Pandolfo M: PGC-1alpha
down-regulation affects the antioxidant response in Friedreich's
ataxia. PLoS One. 5:e100252010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu C and Lin JD: PGC-1 coactivators in
the control of energy metabolism. Acta Biochim Biophys Sin
(Shanghai). 43:248–257. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Valle I, Alvarez-Barrientos A, Arza E,
Lamas S and Monsalve M: PGC-1alpha regulates the mitochondrial
antioxidant defense system in vascular endothelial cells.
Cardiovasc Res. 66:562–573. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tsunemi T, Ashe TD, Morrison BE, Soriano
KR, Au J, Roque RA, Lazarowski ER, Damian VA, Masliah E and La
Spada AR: PGC-1α rescues Huntington's disease proteotoxicity by
preventing oxidative stress and promoting TFEB function. Sci Transl
Med. 4:142ra972012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liu SC, Tu YK, Chien MN and Chien KL:
Effect of antidiabetic agents added to metformin on glycaemic
control, hypoglycaemia and weight change in patients with type 2
diabetes: A network meta-analysis. Diabetes Obes Metab. 14:810–820.
2012. View Article : Google Scholar : PubMed/NCBI
|