1
|
Poprach A, Petrakova K, Vyskoýil J, Lakomý
R, Nċmeýek R, Kocak I, Kocakova I and Vyzula R: Cardiotoxicity of
drugs used in oncology. Klinicka Onkologie: Casopis Ceske a
Slovenske Onkologicke Spolecnosti. 21:288–293. 2008.(In Czech).
PubMed/NCBI
|
2
|
Jain D: Cardiotoxicity of doxorubicin and
other anthracycline derivatives. J Nucl Cardiol. 7:53–62. 2000.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Khan MA, Singh M, Khan MS, Ahmad W, Najmi
AK and Ahmad S: Alternative approach for mitigation of
doxorubicin-induced cardiotoxicity using herbal agents. Curr Clin
Pharmacol. 9:288–297. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Nagai K, Fukuno S, Oda A and Konishi H:
Protective effects of taurine on doxorubicin-induced acute
hepatotoxicity through suppression of oxidative stress and
apoptotic responses. Anticancer Drugs. 27:17–23. 2015. View Article : Google Scholar
|
5
|
Wang S, Kotamraju S, Konorev E, Kalivendi
S, Joseph J and Kalyanaraman B: Activation of nuclear factor-kappaB
during doxorubicin-induced apoptosis in endothelial cells and
myocytes is pro-apoptotic: The role of hydrogen peroxide. Biochem
J. 367:729–740. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kalyanaraman B, Joseph J, Kalivendi S,
Wang S, Konorev E and Kotamraju S: Doxorubicin-induced apoptosis:
Implications in cardiotoxicity. Mol Cell Biochem. 234-235:119–124.
2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ueno M, Kakinuma Y, Yuhki K, Murakoshi N,
Iemitsu M, Miyauchi T and Yamaguchi I: Doxorubicin induces
apoptosis by activation of caspase-3 in cultured cardiomyocytes in
vitro and rat cardiac ventricles in vivo. J Pharmacol Sci.
101:151–158. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
van der Horst A and Burgering BM:
Stressing the role of FoxO proteins in lifespan and disease. Nat
Rev Mol Cell Biol. 8:440–450. 2007. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Yang JY, Zong CS, Xia W, Yamaguchi H, Ding
Q, Xie X, Lang JY, Lai CC, Chang CJ, Huang WC, et al: ERK promotes
tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation.
Nat Cell Biol. 10:138–148. 2008. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Yang W, Dolloff NG and El-Deiry WS: ERK
and MDM2 prey on FOXO3a. Nat Cell Biol. 10:125–126. 2008.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Huang H and Tindall DJ: Dynamic FoxO
transcription factors. J Cell Sci. 120:2479–2487. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kops GJ, Dansen TB, Polderman PE, Saarloos
I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH and Burgering
BM: Forkhead transcription factor FOXO3a protects quiescent cells
from oxidative stress. Nature. 419:316–321. 2002. View Article : Google Scholar : PubMed/NCBI
|
13
|
Marinkovic D, Zhang X, Yalcin S, Luciano
JP, Brugnara C, Huber T and Ghaffari S: Foxo3 is required for the
regulation of oxidative stress in erythropoiesis. J Clin Invest.
117:2133–2144. 2007. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Zick SM, Vautaw BM, Gillespie B and
Aaronson KD: Hawthorn Extract Randomized Blinded Chronic Heart
Failure (HERB CHF) trial. Eur J Heart Fail. 11:990–999. 2009.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang XS, Hu XC, Chen GL, Yuan X, Yang RN,
Liang S, Ren J, Sun JC, Kong GQ, Gao SG and Feng XS: Effects of
vitexin on the pharmacokinetics and mRNA expression of CYP isozymes
in rats. Phytother Res. 29:366–372. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Je HG, Hong SM, Je HD, Choi YS, Seo SY,
Min YS, Chung SJ, Shin YK, Lee TJ, Park ES and Jeong JH: The
inhibitory effect of vitexin on the agonist-induced regulation of
vascular contractility. Pharmazie. 69:224–228. 2014.PubMed/NCBI
|
17
|
Tassell MC, Kingston R, Gilroy D, Lehane M
and Furey A: Hawthorn (Crataegus spp.) in the treatment of
cardiovascular disease. Pharmacogn Rev. 4:32–41. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Xue HF, Ying ZM, Zhang WJ, Meng YH, Ying
XX and Kang TG: Hepatic, gastric, and intestinal first-pass effects
of vitexin in rats. Pharm Biol. 52:967–971. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lu CC, Xu YQ, Wu JC, Hang PZ, Wang Y, Wang
C, Wu JW, Qi JC, Zhang Y and Du ZM: Vitexin protects against
cardiac hypertrophy via inhibiting calcineurin and CaMKII signaling
pathways. Naunyn-Schmiedeberg Arch Pharmacol. 386:747–755. 2013.
View Article : Google Scholar
|
20
|
Flohe L and Otting F: Superoxide dismutase
assays. Methods Enzymol. 105:93–104. 1984. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sharma HS and Das DK: Role of cytokines in
myocardial ischemia and reperfusion. Mediators Inflamm. 6:175–183.
1997. View Article : Google Scholar : PubMed/NCBI
|
22
|
El-Sayed EM, Mansour AM and Abdul-Hameed
MS: Thymol and carvacrol prevent doxorubicin-induced cardiotoxicity
by abrogation of oxidative stress, inflammation, and apoptosis in
rats. J Biochem Mol Toxicol. 30:37–44. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gao Y, Xu Y, Hua S, Zhou S and Wang K:
ALDH2 attenuates Dox-induced cardiotoxicity by inhibiting cardiac
apoptosis and oxidative stress. Int J Clin Exp Med. 8:6794–6803.
2015.PubMed/NCBI
|
24
|
Torun AN, Kulaksizoglu S, Kulaksizoglu M,
Pamuk BO, Isbilen E and Tutuncu NB: Serum total antioxidant status
and lipid peroxidation marker malondialdehyde levels in overt and
subclinical hypothyroidism. Clin Endocrinol (Oxf). 70:469–474.
2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ma Z, Ji W, Fu Q and Ma S: Formononetin
inhibited the inflammation of LPS-induced acute lung injury in mice
associated with induction of PPAR gamma expression. Inflammation.
36:1560–1566. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Munoz A and Costa M: Nutritionally
mediated oxidative stress and inflammation. Oxid Med Cell Longev.
6109502013.PubMed/NCBI
|
27
|
Reuter S, Gupta SC, Chaturvedi MM and
Aggarwal BB: Oxidative stress, inflammation, and cancer: How are
they linked? Free Radic Biol Med. 49:1603–1616. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Barnes PJ and Karin M: Nuclear
factor-kappaB: A pivotal transcription factor in chronic
inflammatory diseases. N Engl J Med. 336:1066–1071. 1997.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Frantz S, Fraccarollo D, Wagner H, Behr
TM, Jung P, Angermann CE, Ertl G and Bauersachs J: Sustained
activation of nuclear factor kappa B and activator protein 1 in
chronic heart failure. Cardiovascular Res. 57:749–756. 2003.
View Article : Google Scholar
|
30
|
Van der Heiden K, Cuhlmann S, le Luong A,
Zakkar M and Evans PC: Role of nuclear factor kappaB in
cardiovascular health and disease. Clinical Sci. 118:593–605. 2010.
View Article : Google Scholar
|
31
|
Chen CT, Wang ZH, Hsu CC, Lin HH and Chen
JH: In vivo protective effects of diosgenin against
doxorubicin-induced cardiotoxicity. Nutrients. 7:4938–4954. 2015.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Gulimire A, Ybadaiti T, Rena K and Ting
FW: Protective effect of total flavonoids of H. rhamnoides
L. sunsp. Turkestanica rousi against adriamycin-induced
cardiotoxicity in rats. Xin Jiang Yi Ke Da Xue Xue Bao. 33:383–385.
2010.
|
33
|
Dash SK, Chattopadhyay S, Ghosh T, Dash
SS, Tripathy S, Das B, Bag BG, Das D and Roy S: Self-assembled
betulinic acid protects doxorubicin induced apoptosis followed by
reduction of ROS-TNF-alpha-caspase-3 activity. Biomed Pharmacother.
72:144–157. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kim AD, Kang KA, Piao MJ, Kim KC, Zheng J,
Yao CW, Cha JW, Hyun CL, Kang HK, Lee NH and Hyun JW:
Cytoprotective effect of eckol against oxidative stress-induced
mitochondrial dysfunction: involvement of the FoxO3a/AMPK pathway.
J Cell Biochem. 115:1403–1411. 2014. View Article : Google Scholar : PubMed/NCBI
|