1
|
Chen Y, Teng FY and Tang BL: Coaxing bone
marrow stromal mesenchymal stem cells towards neuronal
differentiation: Progress and uncertainties. Cell Mol Life Sci.
63:1649–1657. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Phinney DG and Isakova I: Plasticity and
therapeutic potential of mesenchymal stem cells in the nervous
system. Curr Pharm Des. 11:1255–1265. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tse WT, Pendleton JD, Beyer WM, Egalka MC
and Guinan EC: Suppression of allogeneic T-cell proliferation by
human marrow stromal cells: Implications in transplantation.
Transplantation. 75:389–397. 2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Nemeth K and Mezey E: Bone marrow stromal
cells as immunomodulators. A primer for dermatologists. J Dermatol
Sci. 77:11–20. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
White BC, Sullivan JM, DeGracia DJ, O'Neil
BJ, Neumar RW, Grossman LI, Rafols JA and Krause GS: Brain ischemia
and reperfusion: Molecular mechanisms of neuronal injury. J Neurol
Sci. 179:1–33. 2000. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sharp FR, Ran R, Lu A, Tang Y, Strauss KI,
Glass T, Ardizzone T and Bernaudin M: Hypoxic preconditioning
protects against ischemic brain injury. NeuroRx. 1:26–35. 2004.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Theus MH, Wei L, Cui L, Francis K, Hu X,
Keogh C and Yu SP: In vitro hypoxic preconditioning of embryonic
stem cells as a strategy of promoting cell survival and functional
benefits after transplantation into the ischemic rat brain. Exp
Neurol. 210:656–670. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Weaver CH, Buckner CD, Longin K, Appelbaum
FR, Rowley S, Lilleby K, Miser J, Storb R, Hansen JA and Bensinger
W: Syngeneic transplantation with peripheral blood mononuclear
cells collected after the administration of recombinant human
granulocyte colony-stimulating factor. Blood. 82:1981–1984.
1993.PubMed/NCBI
|
9
|
Chiba Y, Kuroda S, Osanai T, Shichinohe H,
Houkin K and Iwasaki Y: Impact of ageing on biological features of
bone marrow stromal cells (BMSC) in cell transplantation therapy
for CNS disorders: Functional enhancement by granulocyte-colony
stimulating factor (G-CSF). Neuropathology. 32:139–148. 2012.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Lu SS, Liu S, Zu QQ, Xu XQ, Yu J, Wang JW,
Zhang Y and Shi HB: In vivo MR imaging of intraarterially delivered
magnetically labeled mesenchymal stem cells in a canine stroke
model. PLoS One. 8:e549632013. View Article : Google Scholar : PubMed/NCBI
|
11
|
González MN, Dey N, Garg NJ and Postan M:
Granulocyte colony-stimulating factor partially repairs the damage
provoked by Trypanosoma cruzi in murine myocardium. Int J
Cardiol. 168:2567–2574. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Schäbitz WR, Kollmar R, Schwaninger M,
Juettler E, Bardutzky J, Schölzke MN, Sommer C and Schwab S:
Neuroprotective effect of granulocyte colony-stimulating factor
after focal cerebral ischemia. Stroke. 34:745–751. 2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Nandoe TR, Hurtado A, Levi AD, Grotenhuis
JA and Oudega M: Bone marrow stromal cells for repair of the spinal
cord: Towards clinical application. Cell Transplant. 15:563–577.
2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li Y and Chopp M: Marrow stromal cell
transplantation in stroke and traumatic brain injury. Neurosci
Lett. 456:120–123. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kacimi R, Chentoufi J, Honbo N, Long CS
and Karliner JS: Hypoxia differentially regulates stress proteins
in cultured cardiomyocytes: Role of the p38 stress-activated kinase
signaling cascade, and relation to cytoprotection. Cardiovasc Res.
46:139–150. 2000. View Article : Google Scholar : PubMed/NCBI
|
17
|
Corbucci GG, Marchi A, Lettieri B and
Luongo C: Mechanisms of cell protection by adaptation to chronic
and acute hypoxia: Molecular biology and clinical practice. Minerva
Anestesiol. 71:727–740. 2005.PubMed/NCBI
|
18
|
Wei L, Fraser JL, Lu ZY, Hu X and Yu SP:
Transplantation of hypoxia preconditioned bone marrow mesenchymal
stem cells enhances angiogenesis and neurogenesis after cerebral
ischemia in rats. Neurobiol Dis. 46:635–645. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chung DJ, Wong A, Hayashi K and Yellowley
CE: Effect of hypoxia on generation of neurospheres from adipose
tissue-derived canine mesenchymal stromal cells. Vet J.
199:123–130. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wang Y, Fu W, Zhang S, He X, Liu Z, Gao D
and Xu T: CXCR-7 receptor promotes SDF-1α-induced migration of bone
marrow mesenchymal stem cells in the transient cerebral
ischemia/reperfusion rat hippocampus. Brain Res. 1575:78–86. 2014.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Nichols JE, Niles JA, DeWitt D, Prough D,
Parsley M, Vega S, Cantu A, Lee E and Cortiella J: Neurogenic and
neuro-protective potential of a novel subpopulation of peripheral
blood-derived CD133+ ABCG2+ CXCR4+ mesenchymal stem cells:
Development of autologous cell-based therapeutics for traumatic
brain injury. Stem Cell Res Ther. 4:32013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kinnaird T, Stabile E, Burnett MS, Shou M,
Lee CW, Barr S, Fuchs S and Epstein SE: Local delivery of
marrow-derived stromal cells augments collateral perfusion through
paracrine mechanisms. Circulation. 109:1543–1549. 2004. View Article : Google Scholar : PubMed/NCBI
|