1
|
Aird WC: Phenotypic heterogeneity of the
endothelium: I. Structure, function and mechanisms. Circ Res.
100:158–173. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Aird WC: Phenotypic heterogeneity of the
endothelium: II. Representative vascular beds. Circ Res.
100:174–190. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tse D and Stan RV: Morphological
heterogeneity of endothelium. Semin Thromb Hemost. 36:236–245.
2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Stan RV: Endothelial stomatal and
fenestral diaphragms in normal vessels and angiogenesis. J Cell Mol
Med. 11:621–643. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Stan RV, Ghitescu L, Jacobson BS and
Palade GE: Isolation, cloning, and localization of rat PV-1, a
novel endothelial caveolar protein. J Cell Biol. 145:1189–1198.
1999. View Article : Google Scholar : PubMed/NCBI
|
6
|
Stan RV: Structure of caveolae. Biochim
Biophys Acta. 1746:334–348. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bearer EL and Orci L: Endothelial
fenestral diaphragms: A quick-freeze, deep-etch study. J Cell Biol.
100:418–428. 1985. View Article : Google Scholar : PubMed/NCBI
|
8
|
Simionescu M, Simionescu N, Silbert JE and
Palade GE: Differentiated microdomains on the luminal surface of
the capillary endothelium. II. Partial characterization of their
anionic sites. J Cell Biol. 90:614–621. 1981. View Article : Google Scholar : PubMed/NCBI
|
9
|
Rostgaard J and Qvortrup K: Electron
microscopic demonstrations of filamentous molecular sieve plugs in
capillary fenestrae. Microvasc Res. 53:1–13. 1997. View Article : Google Scholar : PubMed/NCBI
|
10
|
Stan RV, Tse D, Deharvengt SJ, Smits NC,
Xu Y, Luciano MR, McGarry CL, Buitendijk M, Nemani KV, Elgueta R,
et al: The diaphragms of fenestrated endothelia: Gatekeepers of
vascular permeability and blood composition. Dev Cell.
23:1203–1218. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Milici AJ, L'Hernault N and Palade GE:
Surface densities of diaphragmed fenestrae and transendothelial
channels in different murine capillary beds. Circ Res. 56:709–717.
1985. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hallmann R, Mayer DN, Berg EL, Broermann R
and Butcher EC: Novel mouse endothelial cell surface marker is
suppressed during differentiation of the blood brain barrier. Dev
Dyn. 202:325–332. 1995. View Article : Google Scholar : PubMed/NCBI
|
13
|
Niemela H, Elima K, Henttinen T, Irjala H,
Salmi M and Jalkanen S: Molecular identification of PAL-E, a widely
used endothelial-cell marker. Blood. 106:3405–3409. 2005.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Stan RV, Tkachenko E and Niesman IR: PV1
is a key structural component for the formation of the stomatal and
fenestral diaphragms. Mol Biol Cell. 15:3615–3630. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ioannidou S, Deinhardt K, Miotla J,
Bradley J, Cheung E, Samuelsson S, Ng YS and Shima DT: An in vitro
assay reveals a role for the diaphragm protein PV-1 in endothelial
fenestra morphogenesis. Proc Natl Acad Sci USA. 103:16770–16775.
2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Madden SL, Cook BP, Nacht M, Weber WD,
Callahan MR, Jiang Y, Dufault MR, Zhang X, Zhang W, WalterYohrling
J, et al: Vascular gene expression in nonneoplastic and malignant
brain. Am J Pathol. 165:601–608. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
CarsonWalter EB, Hampton J, Shue E,
Geynisman DM, Pillai PK, Sathanoori R, Madden SL, Hamilton RL and
Walter KA: Plasmalemmal vesicle associated protein-1 is a novel
marker implicated in brain tumor angiogenesis. Clin Cancer Res.
11:7643–7650. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu Y, CarsonWalter EB, Cooper A, Winans
BN, Johnson MD and Walter KA: Vascular gene expression patterns are
conserved in primary and metastatic brain tumors. J Neurooncol.
99:13–24. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Keuschnigg J, Henttinen T, Auvinen K,
Karikoski M, Salmi M and Jalkanen S: The prototype endothelial
marker PAL-E is a leukocyte trafficking molecule. Blood.
114:478–484. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Minshall RD and Malik AB: Transport across
the endothelium: Regulation of endothelial permeability. Handb Exp
Pharmacol. 107–144. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Schafer NF, Luhmann UF, Feil S and Berger
W: Differential gene expression in Ndph-knockout mice in retinal
development. Invest Ophthalmol Vis Sci. 50:906–916. 2009.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Klaassen I, Hughes JM, Vogels IM,
Schalkwijk CG, Van Noorden CJ and Schlingemann RO: Altered
expression of genes related to blood-retina barrier disruption in
streptozotocin-induced diabetes. Exp Eye Res. 89:4–15. 2009.
View Article : Google Scholar : PubMed/NCBI
|
23
|
WisniewskaKruk J, Hoeben KA, Vogels IM,
Gaillard PJ, Van Noorden CJ, Schlingemann RO and Klaassen I: A
novel co-culture model of the blood-retinal barrier based on
primary retinal endothelial cells, pericytes and astrocytes. Exp
Eye Res. 96:181–190. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
WisniewskaKruk J, Klaassen I, Vogels IM,
Magno AL, Lai CM, Van Noorden CJ, Schlingemann RO and Rakoczy EP:
Molecular analysis of blood-retinal barrier loss in the Akimba
mouse, a model of advanced diabetic retinopathy. Exp Eye Res.
122:123–131. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Mozer AB, Whittemore SR and Benton RL:
Spinal microvascular expression of PV-1 is associated with
inflammation, perivascular astrocyte loss, and diminished EC
glucose transport potential in acute SCI. Curr Neurovasc Res.
7:238–250. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yamamoto I, Horita S, Takahashi T, Tanabe
K, Fuchinoue S, Teraoka S, Hattori M and Yamaguchi Y: Glomerular
expression of plasmalemmal vesicle-associated protein-1 in patients
with transplant glomerulopathy. Am J Transplant. 7:1954–1960. 2007.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang YH, Cheng TY, Chen TY, Chang KM,
Chuang VP and Kao KJ: Plasmalemmal vesicle associated protein
(PLVAP) as a therapeutic target for treatment of hepatocellular
carcinoma. BMC Cancer. 14:8152014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Stan RV, Kubitza M and Palade GE: PV-1 is
a component of the fenestral and stomatal diaphragms in fenestrated
endothelia. Proc Natl Acad Sci USA. 96:13203–13207. 1999.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Hnasko R, McFarland M and Ben-Jonathan N:
Distribution and characterization of plasmalemma vesicle protein-1
in rat endocrine glands. J Endocrinol. 175:649–661. 2002.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Stan RV, Arden KC and Palade GE: cDNA and
protein sequence, genomic organization and analysis of cis
regulatory elements of mouse and human PLVAP genes. Genomics.
72:304–313. 2001. View Article : Google Scholar : PubMed/NCBI
|
31
|
Stan RV: Multiple PV1 dimers reside in the
same stomatal or fenestral diaphragm. Am J Physiol Heart Circ
Physiol. 286:H1347–H1353. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Deharvengt SJ, Tse D, Sideleva O, McGarry
C, Gunn JR, Longnecker DS, Carriere C and Stan RV: PV1
down-regulation via shRNA inhibits the growth of pancreatic
adenocarcinoma xenografts. J Cell Mol Med. 16:2690–2700. 2012.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Strickland LA, Jubb AM, Hongo JA, Zhong F,
Burwick J, Fu L, Frantz GD and Koeppen H: Plasmalemmal
vesicle-associated protein (PLVAP) is expressed by tumour
endothelium and is upregulated by vascular endothelial growth
factor-A (VEGF). J Pathol. 206:466–475. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hofman P, Blaauwgeers HG, Vrensen GF and
Schlingemann RO: Role of VEGF-A in endothelial phenotypic shift in
human diabetic retinopathy and VEGF-A-induced retinopathy in
monkeys. Ophthalmic Res. 33:156–162. 2001. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hnasko R, Frank PG, BenJonathan N and
Lisanti MP: PV-1 is negatively regulated by VEGF in the lung of
caveolin-1, but not caveolin-2, null mice. Cell Cycle. 5:2012–2020.
2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Herrnberger L, Seitz R, Kuespert S, Bösl
MR, Fuchshofer R and Tamm ER: Lack of endothelial diaphragms in
fenestrae and caveolae of mutant Plvap-deficient mice. Histochem
Cell Biol. 138:709–724. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hisatsune H, Matsumura K, Ogawa M, Uemura
A, Kondo N, Yamashita JK, Katsuta H and Nishikawa S, Chiba T and
Nishikawa S: High level of endothelial cell-specific gene
expression by a combination of the 5′ flanking region and the 5′
half of the first intron of the VE-cadherin gene. Blood.
105:4657–4663. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Williamson JR and Grisham JW: Electron
microscopy of leukocytic margination and emigration in acute
inflammation in dog pancreas. Am J Pathol. 39:239–256.
1961.PubMed/NCBI
|
39
|
Girard JP, Moussion C and Förster R: HEVs,
lymphatics and homeostatic immune cell trafficking in lymph nodes.
Nat Rev Immunol. 12:762–773. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Germain RN, Robey EA and Cahalan MD: A
decade of imaging cellular motility and interaction dynamics in the
immune system. Science. 336:1676–1681. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Rantakari P, Auvinen K, Jäppinen N,
Kapraali M, Valtonen J, Karikoski M, Gerke H, Iftakhar-E-Khuda I,
Keuschnigg J, Umemoto E, et al: The endothelial protein PLVAP in
lymphatics controls the entry of lymphocytes and antigens into
lymph nodes. Nat Immunol. 16:386–396. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Tichauer KM, Deharvengt SJ, Samkoe KS,
Gunn JR, Bosenberg MW, Turk MJ, Hasan T, Stan RV and Pogue BW:
Tumor endothelial marker imaging in melanomas using dual-tracer
fluorescence molecular imaging. Mol Imaging Biol. 16:372–382. 2014.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Shue EH, CarsonWalter EB, Liu Y, Winans
BN, Ali ZS, Chen J and Walter KA: Plasmalemmal vesicle associated
protein-1 (PV-1) is a marker of blood-brain barrier disruption in
rodent models. BMC Neurosci. 9:292008. View Article : Google Scholar : PubMed/NCBI
|
44
|
Whetstone WD, Hsu JY, Eisenberg M, Werb Z
and Noble-Haeusslein LJ: Blood-spinal cord barrier after spinal
cord injury: Relation to revascularization and wound healing. J
Neurosci Res. 74:227–239. 2003. View Article : Google Scholar : PubMed/NCBI
|
45
|
Benton RL, Maddie MA, Minnillo DR, Hagg T
and Whittemore SR: Griffonia simplicifolia isolectin B4 identifies
a specific subpopulation of angiogenic blood vessels following
contusive spinal cord injury in the adult mouse. J Comp Neurol.
507:1031–1052. 2008. View Article : Google Scholar : PubMed/NCBI
|
46
|
Casella GT, Bunge MB and Wood PM:
Endothelial cell loss is not a major cause of neuronal and glial
cell death following contusion injury of the spinal cord. Exp
Neurol. 202:8–20. 2006. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ichimura K, Stan RV, Kurihara H and Sakai
T: Glomerular endothelial cells form diaphragms during development
and pathologic conditions. J Am Soc Nephrol. 19:1463–1471. 2008.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Joosten SA, Sijpkens YW, van Kooten C and
Paul LC: Chronic renal allograft rejection: Pathophysiologic
considerations. Kidney Int. 68:1–13. 2005. View Article : Google Scholar : PubMed/NCBI
|
49
|
Shastry BS, Hejtmancik JF and Trese MT:
Identification of novel missense mutations in the Norrie disease
gene associated with one X-linked and four sporadic cases of
familial exudative vitreoretinopathy. Hum Mutat. 9:396–401. 1997.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Black GC, Perveen R, Bonshek R, Cahill M,
ClaytonSmith J, Lloyd IC and McLeod D: Coats' disease of the retina
(unilateral retinal telangiectasis) caused by somatic mutation in
the NDP gene: A role for norrin in retinal angiogenesis. Hum Mol
Genet. 8:2031–2035. 1999. View Article : Google Scholar : PubMed/NCBI
|
51
|
Chen ZY, Battinelli EM, Fielder A, Bundey
S, Sims K, Breakefield XO and Craig IW: A mutation in the Norrie
disease gene (NDP) associated with X-linked familial exudative
vitreoretinopathy. Nat Genet. 5:180–183. 1993. View Article : Google Scholar : PubMed/NCBI
|
52
|
Luhmann UF, Lin J, Acar N, Lammel S, Feil
S, Grimm C, Seeliger MW, Hammes HP and Berger W: Role of the Norrie
disease pseudoglioma gene in sprouting angiogenesis during
development of the retinal vasculature. Invest Ophthalmol Vis Sci.
46:3372–3382. 2005. View Article : Google Scholar : PubMed/NCBI
|
53
|
Hofman P, Blaauwgeers HG, Tolentino MJ,
Adamis AP, Nunes Cardozo BJ, Vrensen GF and Schlingemann RO: VEGF-A
induced hyperpermeability of blood-retinal barrier endothelium in
vivo is predominantly associated with pinocytotic vesicular
transport and not with formation of fenestrations. Vascular
endothelial growth factor-A. Curr Eye Res. 21:637–645. 2000.
View Article : Google Scholar : PubMed/NCBI
|