DNA methylation in spermatogenesis and male infertility (Review)
- Authors:
- Xiangrong Cui
- Xuan Jing
- Xueqing Wu
- Meiqin Yan
- Qiang Li
- Yan Shen
- Zhenqiang Wang
-
Affiliations: Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China, Clinical Laboratory, Shanxi Province People's Hospital, Taiyuan, Shanxi 030001, P.R. China - Published online on: August 4, 2016 https://doi.org/10.3892/etm.2016.3569
- Pages: 1973-1979
This article is mentioned in:
Abstract
Molaro A, Falciatori I, Hodges E, Aravin AA, Marran K, Rafii S, McCombie WR, Smith AD and Hannon GJ: Two waves of de novo methylation during mouse germ cell development. Genes Dev. 28:1544–1549. 2014. View Article : Google Scholar : PubMed/NCBI | |
Verma A, Rajput S, De S, Kumar R, Chakravarty AK and Datta TK: Genome-wide profiling of sperm DNA methylation in relation to buffalo (Bubalus bubalis) bull fertility. Theriogenology. 82:750–759, e751. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu C and Song N: Epigenetic regulation in spermatogenesis. Zhong Hua Nan Ke Xue. 20:387–391. 2014.(In Chinese). | |
Dogra S, Sona C, Kumar A and Yadav PN: Epigenetic regulation of G protein coupled receptor signaling and its implications in psychiatric disorders. Int J Biochem Cell Biol. 16:S1357–S2725. 2016. | |
Wang P, Zhang H, Hou H, Wang Q, Li Y, Huang Y, Xie L, Gao F, He S and Li L: Cell cycle arrest induced by inhibitors of epigenetic modifications in maize (Zea mays) seedling leaves: Characterization of the process and possible mechanisms involved. New Phytol. Apr 4–2016.(Epub ahead of print). View Article : Google Scholar | |
Cheng P, Chen H, Zhang RP, Liu SR and Zhou-Cun A: Polymorphism in DNMT1 may modify the susceptibility to oligospermia. Reprod Biomed Online. 28:644–649. 2014. View Article : Google Scholar : PubMed/NCBI | |
Albertini DF: Relevant and irrelevant translational discovery and male infertility: The case of the Y chromosome and more! J Assist Reprod Genet. 31:1113–1114. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Xiao HJ, Qi T, Chen DL, Long HM and Liu SH: Rare earths exposure and male infertility: The injury mechanism study of rare earths on male mice and human sperm. Environ Sci Pollut Res Int. 22:2076–2086. 2015. View Article : Google Scholar : PubMed/NCBI | |
Komiya A, Kato T, Kawauchi Y, Watanabe A and Fuse H: Clinical factors associated with sperm DNA fragmentation in male patients with infertility. Scientific World Journal. 2014:8683032014. View Article : Google Scholar : PubMed/NCBI | |
Cheng BW, Guo H, Li ZF, Ma L, Wang YL, Yang LJ, Ye JJ and Zheng S: Identification of null and duplicated alleles for forensic DYS549, DYS527 and DYS459 in male infertility population. Yi Chuan. 36:786–792. 2014.(In Chinese). PubMed/NCBI | |
Katib AA, AlHawsawi K, Motair W and Bawa AM: Secondary infertility and the aging male, overview. Cent European J Urol. 67:184–188. 2014.PubMed/NCBI | |
Griseri P, Garrone O, Lo Sardo A, Monteverde M, Rusmini M, Tonissi F, Merlano M, Bruzzi P, Lo Nigro C and Ceccherini I: Genetic and epigenetic factors affect RET gene expression in breast cancer cell lines and influence survival in patients. Oncotarget. Mar 28–2016.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
DeVries A and Vercelli D: Epigenetic Mechanisms in Asthma. Ann Am Thorac Soc. 13(Suppl 1): S48–S50. 2016.PubMed/NCBI | |
Kim SY, Morales CR, Gillette TG and Hill JA: Epigenetic regulation in heart failure. Curr Opin Cardiol. 31:255–265. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jena SC, Kumar S, Rajput S, Roy B, Verma A, Kumaresan A, Mohanty TK, De S, Kumar R and Datta TK: Differential methylation status of IGF2-H19 locus does not affect the fertility of crossbred bulls but some of the CTCF binding sites could be potentially important. Mol Reprod Dev. 81:350–362. 2014. View Article : Google Scholar : PubMed/NCBI | |
KuramochiMiyagawa S, KitaKojima K, Shiromoto Y, Ito D, Koshima H and Nakano T: DNA methylation in mouse testes. Methods Mol Biol. 1093:97–109. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schütte B, El Hajj N, Kuhtz J, Nanda I, Gromoll J, Hahn T, Dittrich M, Schorsch M, Müller T and Haaf T: Broad DNA methylation changes of spermatogenesis, inflammation and immune response-related genes in a subgroup of sperm samples for assisted reproduction. Andrology. 1:822–829. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kläver R, Tüttelmann F, Bleiziffer A, Haaf T, Kliesch S and Gromoll J: DNA methylation in spermatozoa as a prospective marker in andrology. Andrology. 1:731–740. 2013. View Article : Google Scholar : PubMed/NCBI | |
Calicchio R, Doridot L, Miralles F, Méhats C and Vaiman D: DNA methylation, an epigenetic mode of gene expression regulation in reproductive science. Curr Pharm Des. 20:1726–1750. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gan H, Wen L, Liao S, Lin X, Ma T, Liu J, Song CX, Wang M, He C, Han C, et al: Dynamics of 5-hydroxymethylcytosine during mouse spermatogenesis. Nat Commun. 4:19952013. View Article : Google Scholar : PubMed/NCBI | |
Boissonnas CC, Jouannet P and Jammes H: Epigenetic disorders and male subfertility. Fertil Steril. 99:624–631. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mychasiuk R, Harker A, Ilnytskyy S and Gibb R: Paternal stress prior to conception alters DNA methylation and behaviour of developing rat offspring. Neuroscience. 241:100–105. 2013. View Article : Google Scholar : PubMed/NCBI | |
Paluch BE, Naqash AR, Brumberger Z, Nemeth MJ and Griffiths EA: Epigenetics: A primer for clinicians. Blood Rev. Feb 26–2016.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhou P, Lu Y and Luo Y: Progresses of DNA methylation in common ocular tumor. Zhonghua Yan Ke Za Zhi. 51:950–954. 2015.(In Chinese). PubMed/NCBI | |
Wijenayake S and Storey KB: The role of DNA methylation during anoxia tolerance in a freshwater turtle (Trachemys scripta elegans). J Comp Physiol B. 186:333–342. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ko YG, Yun J, Park HJ, Tanaka S, Shiota K and Cho JH: Dynamic methylation pattern of the methyltransferase1o (Dnmt1o) 5′-flanking region during mouse oogenesis and spermatogenesis. Mol Reprod Dev. 80:212–222. 2013. View Article : Google Scholar : PubMed/NCBI | |
Okamura E, Matsuzaki H, Sakaguchi R, Takahashi T, Fukamizu A and Tanimoto K: The H19 imprinting control region mediates preimplantation imprinted methylation of nearby sequences in yeast artificial chromosome transgenic mice. Mol Cell Biol. 33:858–871. 2013. View Article : Google Scholar : PubMed/NCBI | |
Meikar O, Da Ros M and Kotaja N: Epigenetic regulation of male germ cell differentiation. Subcell Biochem. 61:119–138. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bose R, Adiga SK, D'Souza F, Salian SR, Uppangala S, Kalthur G, Jain N, Radhakrishnan RA, Bhat N, Krishnamurthy H, et al: Germ cell abnormalities in streptozotocin induced diabetic mice do not correlate with blood glucose level. J Assist Reprod Genet. 29:1405–1413. 2012. View Article : Google Scholar : PubMed/NCBI | |
Saferali A, Moussette S, Chan D, Trassler J, Chen T, Rozen R and Nauvoma AK: DNA methyltransferase 1 (Dnmt1) mutation affects Snrpn imprinting in the mouse male germ line. Genome. 55:673–682. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kato Y and Nozaki M: Distinct DNA methylation dynamics of spermatogenic cell-specific intronless genes is associated with CpG content. PLoS One. 7:e436582012. View Article : Google Scholar : PubMed/NCBI | |
Zhang GL, Zhang XF, Feng YM, Li L, Huynh E, Sun XF, Sun ZY and Shen W: Exposure to bisphenol A results in a decline in mouse spermatogenesis. Reprod Fertil Dev. 25:847–859. 2013. View Article : Google Scholar : PubMed/NCBI | |
Coral S, Covre A, Nicolay HJ, Parisi G, Rizzo A, Colizzi F, Dalla Santa S, Fonsatti E, Fratta E, Sigalotti L, et al: Epigenetic remodelling of gene expression profiles of neoplastic and normal tissues: Immunotherapeutic implications. Br J Cancer. 107:1116–1124. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jenkins TG and Carrell DT: The sperm epigenome and potential implications for the developing embryo. Reproduction. 143:727–734. 2012. View Article : Google Scholar : PubMed/NCBI | |
Carrell DT: Epigenetics of the male gamete. Fertil Steril. 97:267–274. 2012. View Article : Google Scholar : PubMed/NCBI | |
vanMontfoort AP, Hanssen LL, de Sutter P, Viville S, Geraedts JP and de Boer P: Assisted reproduction treatment and epigenetic inheritance. Hum Reprod Update. 18:171–197. 2012. View Article : Google Scholar : PubMed/NCBI | |
Marques CJ, Joao Pinho M, Carvalho F, Bieche I, Barros A and Sousa M: DNA methylation imprinting marks and DNA methyltransferase expression in human spermatogenic cell stages. Epigenetics. 6:1354–1361. 2011. View Article : Google Scholar : PubMed/NCBI | |
Niles KM, Chan D, La Salle S, Oakes CC and Trasler JM: Critical period of nonpromoter DNA methylation acquisition during prenatal male germ cell development. PLoS One. 6:e241562011. View Article : Google Scholar : PubMed/NCBI | |
Rajender S, Avery K and Agarwal A: Epigenetics, spermatogenesis and male infertility. Mutat Res. 727:62–71. 2011. View Article : Google Scholar : PubMed/NCBI | |
LeBouc Y, Rossignol S, Azzi S, Brioude F, Cabrol S, Gicquel C and Netchine I: Epigenetics, genomic imprinting and developmental disorders. Bull Acad Natl Med. 194:287–297. 2010.(In French). PubMed/NCBI | |
NavarroCosta P, Nogueira P, Carvalho M, Leal F, Cordeiro I, CalhazJorge C, Gonçalves J and Plancha CE: Incorrect DNA methylation of the DAZL promoter CpG island associates with defective human sperm. Hum Reprod. 25:2647–2654. 2010. View Article : Google Scholar : PubMed/NCBI | |
Takashima S, Takehashi M, Lee J, Chuma S, Okano M, Hata K, Suetake I, Nakatsuji N, Miyoshi H, Tajima S, et al: Abnormal DNA methyltransferase expression in mouse germline stem cells results in spermatogenic defects. Biol Reprod. 81:155–164. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yaman R and Grandjean V: Timing of entry of meiosis depends on a mark generated by DNA methyltransferase 3a in testis. Mol Reprod Dev. 73:390–397. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tucker KL, Beard C, Dausmann J, JacksonGrusby L, Laird PW, Lei H, Li E and Jaenisch R: Germ-line passage is required for establishment of methylation and expression patterns of imprinted but not of nonimprinted genes. Genes Dev. 10:1008–1020. 1996. View Article : Google Scholar : PubMed/NCBI | |
Gebert C, Kunkel D, Grinberg A and Pfeifer K: H19 imprinting control region methylation requires an imprinted environment only in the male germ line. Mol Cell Biol. 30:1108–1115. 2010. View Article : Google Scholar : PubMed/NCBI | |
Colosimo A, Di Rocco G, Curini V, Russo V, Capacchietti G, Berardinelli P, Mattioli M and Barboni B: Characterization of the methylation status of five imprinted genes in sheep gametes. Anim Genet. 40:900–908. 2009. View Article : Google Scholar : PubMed/NCBI | |
Boissonnas CC, Abdalaoui HE, Haelewyn V, Fauque P, Dupont JM, Gut I, Vaiman D, Jouannet P, Tost J and Jammes H: Specific epigenetic alterations of IGF2-H19 locus in spermatozoa from infertile men. Eur J Hum Genet. 18:73–80. 2010. View Article : Google Scholar : PubMed/NCBI | |
Trasler JM: Epigenetics in spermatogenesis. Mol Cell Endocrinol. 306:33–36. 2009. View Article : Google Scholar : PubMed/NCBI | |
Feil R: Epigenetic asymmetry in the zygote and mammalian development. Int J Dev Biol. 53:191–201. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schoenmakers S, Wassenaar E, Hoogerbrugge JW, Laven JS, Grootegoed JA and Baarends WM: Female meiotic sex chromosome inactivation in chicken. PLoS Genet. 5:e10004662009. View Article : Google Scholar : PubMed/NCBI | |
Marques CJ, Francisco T, Sousa S, Carvalho F, Barros A and Sousa M: Methylation defects of imprinted genes in human testicular spermatozoa. Fertil Steril. 94:585–594. 2010. View Article : Google Scholar : PubMed/NCBI | |
Godmann M, Lambrot R and Kimmins S: The dynamic epigenetic program in male germ cells: Its role in spermatogenesis, testis cancer, and its response to the environment. Microsc Res Tech. 72:603–619. 2009. View Article : Google Scholar : PubMed/NCBI | |
Henckel A and Feil R: Differential epigenetic marking on imprinted genes and consequences in human diseases. Med Sci (Paris). 24:747–752. 2008.(In French). View Article : Google Scholar : PubMed/NCBI | |
Houshdaran S, Cortessis VK, Siegmund K, Yang A, Laird PW and Sokol RZ: Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS One. 2:e12892007. View Article : Google Scholar : PubMed/NCBI | |
Tanaka H: Regulation of gene expression in spermatogenesis. Tanpakushitsu Kakusan Koso. 52(Suppl 1): 2116–2123. 2007.(In Japanese). PubMed/NCBI | |
Rijlaarsdam MA, Tax DM, Gillis AJ, Dorssers LC, Koestler DC, de Ridder J and Looijenga LH: Genome wide DNA methylation profiles provide clues to the origin and pathogenesis of germ cell tumors. PLoS One. 10:e01221462015. View Article : Google Scholar : PubMed/NCBI | |
Minor A, Chow V and Ma S: Aberrant DNA methylation at imprinted genes in testicular sperm retrieved from men with obstructive azoospermia and undergoing vasectomy reversal. Reproduction. 141:749–757. 2011. View Article : Google Scholar : PubMed/NCBI | |
Peltomäki P: DNA methylation changes in human testicular cancer. Biochim Biophys Acta. 1096:187–196. 1991. View Article : Google Scholar : PubMed/NCBI | |
Kato Y, Kaneda M, Hata K, Kumaki K, Hisano M, Kohara Y, Okano M, Li E, Nozaki M and Sasaki H: Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet. 16:2272–2280. 2007. View Article : Google Scholar : PubMed/NCBI | |
Oakes CC, La Salle S, Smiraglia DJ, Robaire B and Trasler JM: Developmental acquisition of genome-wide DNA methylation occurs prior to meiosis in male germ cells. Dev Biol. 307:368–379. 2007. View Article : Google Scholar : PubMed/NCBI | |
Delaval K, Govin J, Cerqueira F, Rousseaux S, Khochbin S and Feil R: Differential histone modifications mark mouse imprinting control regions during spermatogenesis. EMBO J. 26:720–729. 2007. View Article : Google Scholar : PubMed/NCBI | |
PaoloniGiacobino A, D'Aiuto L, Cirio MC, Reinhart B and Chaillet JR: Conserved features of imprinted differentially methylated domains. Gene. 399:33–45. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chong S, Vickaryous N, Ashe A, Zamudio N, Youngson N, Hemley S, Stopka T, Skoultchi A, Matthews J, Scott HS, et al: Modifiers of epigenetic reprogramming show paternal effects in the mouse. Nat Genet. 39:614–622. 2007. View Article : Google Scholar : PubMed/NCBI | |
PaoloniGiacobino A: Epigenetics in reproductive medicine. Pediatr Res. 61:51R–57R. 2007. View Article : Google Scholar : PubMed/NCBI | |
Omisanjo OA, Biermann K, Hartmann S, Heukamp LC, Sonnack V, Hild A, Brehm R, Bergmann M, Weidner W and Steger K: DNMT1 and HDAC1 gene expression in impaired spermatogenesis and testicular cancer. Histochem Cell Biol. 127:175–181. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gunes S, Arslan MA, Hekim GN and Asci R: The role of epigenetics in idiopathic male infertility. J Assist Reprod Genet. Mar 3–2016.(Epub ahead of print). View Article : Google Scholar | |
Laurentino SS, Borgmann J and Gromoll J: On the origin of sperm epigenetic heterogeneity. Reproduction REP-15-0436. 2016. | |
Casas E and Vavouri T: Sperm epigenomics: Challenges and opportunities. Front Genet. 5:3302014. View Article : Google Scholar : PubMed/NCBI | |
Rousseaux S, Faure AK, Thévenon J, Escoffier E, Lestrat C, Govin J, Hennebicq S, Sèle B, Caron C and Khochbin S: Epigenetics of the sperm cell. Gynecol Obstet Fertil. 34:831–835. 2006.(In French). View Article : Google Scholar : PubMed/NCBI | |
La Salle S and Trasler JM: Dynamic expression of DNMT3a and DNMT3b isoforms during male germ cell development in the mouse. Dev Biol. 296:71–82. 2006. View Article : Google Scholar : PubMed/NCBI | |
Riesewijk AM, Hu L, Schulz U, Tariverdian G, Höglund P, Kere J, Ropers HH and Kalscheuer VM: Monoallelic expression of human PEG1/MEST is paralleled by parent-specific methylation in fetuses. Genomics. 42:236–244. 1997. View Article : Google Scholar : PubMed/NCBI | |
Kerjean A, Dupont JM, Vasseur C, Le Tessier D, Cuisset L, Pàldi A, Jouannet P and Jeanpierre M: Establishment of the paternal methylation imprint of the human H19 and MEST/PEG1 genes during spermatogenesis. Hum Mol Genet. 9:2183–2187. 2000. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Dai H, Martos SN, Xu B, Gao Y, Li T, Zhu G, Schones DE and Wang Z: Distinct roles of DNMT1-dependent and DNMT1-independent methylation patterns in the genome of mouse embryonic stem cells. Genome Biol. 16:1152015. View Article : Google Scholar : PubMed/NCBI | |
Hartmann S, Bergmann M, Bohle RM, Weidner W and Steger K: Genetic imprinting during impaired spermatogenesis. Mol Hum Reprod. 12:407–411. 2006. View Article : Google Scholar : PubMed/NCBI | |
Roberts AR, Blewitt ME, Youngson NA, Whitelaw E and Chong S: Reduced dosage of the modifiers of epigenetic reprogramming Dnmt1, Dnmt3L, SmcHD1 and Foxo3a has no detectable effect on mouse telomere length in vivo. Chromosoma. 120:377–385. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ray D, Wu A, Wilkinson JE, Murphy HS, Lu Q, KluveBeckerman B, Liepnieks JJ, Benson M, Yung R and Richardson B: Aging in heterozygous Dnmt1-deficient mice: Effects on survival, the DNA methylation genes, and the development of amyloidosis. J Gerontol A Biol Sci Med Sci. 61:115–124. 2006. View Article : Google Scholar : PubMed/NCBI | |
Matsuoka T, Kawai K, Ando S, Sugita S, Kandori S, Kojima T, Miyazaki J and Nishiyama H: DNA methyltransferase-3 like protein expression in various histological types of testicular germ cell tumor. Jpn J Clin Oncol hyw012. 2016. View Article : Google Scholar | |
Vlachogiannis G, Niederhuth CE, Tuna S, Stathopoulou A, Viiri K, de Rooij DG, Jenner RG, Schmitz RJ and Ooi SK: The Dnmt3L ADD Domain Controls Cytosine Methylation Establishment during Spermatogenesis. Cell Rep. 15:S2211–S1247. 2015. | |
Liao HF, Chen WS, Chen YH, Kao TH, Tseng YT, Lee CY, Chiu YC, Lee PL, Lin QJ, Ching YH, et al: DNMT3L promotes quiescence in postnatal spermatogonial progenitor cells. Development. 141:2402–2413. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yiran Z, Meiling Z, Zhichao Z, Yunjiao Z and Xin M: Epigenetic regulation of genomic imprinting in germline cells and preimplantation embryos. Yi Chuan. 38:103–108. 2016.(In Chinese). PubMed/NCBI | |
von Meyenn F and Reik W: Forget the Parents: Epigenetic Reprogramming in Human Germ Cells. Cell. 161:1248–1251. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chaillet JR, Vogt TF, Beier DR and Leder P: Parental-specific methylation of an imprinted transgene is established during gametogenesis and progressively changes during embryogenesis. Cell. 66:77–83. 1991. View Article : Google Scholar : PubMed/NCBI | |
Hajder M, Hajder E and Husic A: The Effects of Total Motile Sperm Count on Spontaneous Pregnancy Rate and Pregnancy After IUI Treatment in Couples with Male Factor and Unexplained Infertility. Medical archives. 70:39–43. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mintziori G, Kita M, Duntas L and Goulis DG: Consequences of hyperthyroidism in male and female fertility: Pathophysiology and current management. J Endocrinol Invest. Mar 8–2016. View Article : Google Scholar : PubMed/NCBI | |
Dupree JM, Dickey RM and Lipshultz LI: Inequity between male and female coverage in state infertility laws. Fertil Steril. Mar 5–2016.(Epub ahead of print). View Article : Google Scholar | |
Bolduc S, Fischer MA, Deceuninck G and Thabet M: Factors predicting overall success: A review of 747 microsurgical vasovasostomies. Can Urol Assoc J. 1:388–394. 2007.PubMed/NCBI | |
Liang J, Zhang Y, Yu Y, Sun W, Jing J and Liu R: Effect of chromosomal polymorphisms of different genders on fertilization rate of fresh IVF-ICSI embryo transfer cycles. Reprod Biomed Online. 29:436–444. 2014. View Article : Google Scholar : PubMed/NCBI | |
Oldereid NB, Hanevik HI, Bakkevig I, Romundstad LB, Magnus Ø, Hazekamp J, Hentemann M, Eikeland SN, Skrede S, Reitan IR, et al: Pregnancy outcome according to male diagnosis after ICSI with non-ejaculated sperm compared with ejaculated sperm controls. Reprod Biomed Online. 29:417–423. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wosnitzer M, Goldstein M and Hardy MP: Review of Azoospermia. Spermatogenesis. 4:e282182014. View Article : Google Scholar : PubMed/NCBI | |
GuerreroBosagna C and Skinner MK: Environmentally induced epigenetic transgenerational inheritance of male infertility. Curr Opin Genet Dev. 26:79–88. 2014. View Article : Google Scholar : PubMed/NCBI | |
Komiya A, Kawauchi Y, Kato T, Watanabe A, Tanii I and Fuse H: Sperm nuclear vacuoles in relation to acrosome reactions and sperm motility. Scientific World Journal. 2014:1789702014. View Article : Google Scholar : PubMed/NCBI | |
Xu AM, Liu BJ and Wang ZJ: DAZL and male infertility: an update. Zhonghua Nan Ke Xue. 20:647–650. 2014.(In Chinese). PubMed/NCBI | |
Khazaie Y and Nasr Esfahani MH: MicroRNA and Male Infertility: A Potential for Diagnosis. Int J Fertil Steril. 8:113–118. 2014.PubMed/NCBI | |
Barazani Y, Agarwal A and Sabanegh ES Jr: Functional sperm testing and the role of proteomics in the evaluation of male infertility. Urology. 84:255–261. 2014. View Article : Google Scholar : PubMed/NCBI | |
Komori K, Tsujimura A, Okamoto Y, Matsuoka Y, Takao T, Miyagawa Y, Takada S, Nonomura N and Okuyama A: Relationship between substances in seminal plasma and Acrobeads Test results. Fertil Steril. 91:179–184. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dada R, Kumar M, Jesudasan R, Fernández JL, Gosálvez J and Agarwal A: Epigenetics and its role in male infertility. J Assist Reprod Genet. 29:213–223. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharyya T, Gregorova S, Mihola O, Anger M, Sebestova J, Denny P, Simecek P and Forejt J: Mechanistic basis of infertility of mouse intersubspecific hybrids. Proc Natl Acad Sci USA. 110:E468–E477. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pacheco SE, Houseman EA, Christensen BC, Marsit CJ, Kelsey KT, Sigman M and Boekelheide K: Integrative DNA methylation and gene expression analyses identify DNA packaging and epigenetic regulatory genes associated with low motility sperm. PLoS One. 6:e202802011. View Article : Google Scholar : PubMed/NCBI | |
Soubry A, Hoyo C, Jirtle RL and Murphy SK: A paternal environmental legacy: Evidence for epigenetic inheritance through the male germ line. BioEssays. 36:359–371. 2014. View Article : Google Scholar : PubMed/NCBI | |
Owen CM and Segars JH Jr: Imprinting disorders and assisted reproductive technology. Semin Reprod Med. 27:417–428. 2009. View Article : Google Scholar : PubMed/NCBI | |
Childs AJ, Saunders PT and Anderson RA: Modelling germ cell development in vitro. Mol Hum Reprod. 14:501–511. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cortessis VK, Thomas DC, Levine AJ, Breton CV, Mack TM, Siegmund KD, Haile RW and Laird PW: Environmental epigenetics: Prospects for studying epigenetic mediation of exposure-response relationships. Hum Genet. 131:1565–1589. 2012. View Article : Google Scholar : PubMed/NCBI | |
Berthaut I, Montjean D, Dessolle L, Morcel K, Deluen F, Poirot C, Bashamboo A, McElreavey K and Ravel C: Effect of temozolomide on male gametes: An epigenetic risk to the offspring? J Assist Reprod Genet. 30:827–833. 2013. View Article : Google Scholar : PubMed/NCBI | |
Crews D: Epigenetics and its implications for behavioral neuroendocrinology. Front Neuroendocrinol. 29:344–357. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gabory A, Attig L and Junien C: Epigenetic mechanisms involved in developmental nutritional programming. World J Diabetes. 2:164–175. 2011. View Article : Google Scholar : PubMed/NCBI | |
Katari S, Turan N, Bibikova M, Erinle O, Chalian R, Foster M, Gaughan JP, Coutifaris C and Sapienza C: DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum Mol Genet. 18:3769–3778. 2009. View Article : Google Scholar : PubMed/NCBI | |
Feuer SK, Camarano L and Rinaudo PF: ART and health: Clinical outcomes and insights on molecular mechanisms from rodent studies. Mol Hum Reprod. 19:189–204. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zama AM and Uzumcu M: Epigenetic effects of endocrine-disrupting chemicals on female reproduction: An ovarian perspective. Front Neuroendocrinol. 31:420–439. 2010. View Article : Google Scholar : PubMed/NCBI | |
Niemitz EL and Feinberg AP: Epigenetics and assisted reproductive technology: A call for investigation. Am J Hum Genet. 74:599–609. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lee J and Shinohara T: Epigenetic modifications and self-renewal regulation of mouse germline stem cells. Cell Res. 21:1164–1171. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li L, Le F, Wang LY, Xu XR, Lou HY, Zheng YM, Sheng JZ, Huang HF and Jin F: Normal epigenetic inheritance in mice conceived by in vitro fertilization and embryo transfer. J Zhejiang Univ Sci B. 12:796–804. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wasson JA, Ruppersburg CC and Katz DJ: Restoring totipotency through epigenetic reprogramming. Brief Funct Genomics. 12:118–128. 2013. View Article : Google Scholar : PubMed/NCBI | |
Daxinger L and Whitelaw E: Transgenerational epigenetic inheritance: More questions than answers. Genome Res. 20:1623–1628. 2010. View Article : Google Scholar : PubMed/NCBI | |
Skinner MK: Environmental epigenomics and disease susceptibility. EMBO Rep. 12:620–622. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kitamura A, Miyauchi N, Hamada H, Hiura H, Chiba H, Okae H, Sato A, John RM and Arima T: Epigenetic alterations in sperm associated with male infertility. Congenit Anom (Kyoto). 55:133–144. 2015. View Article : Google Scholar : PubMed/NCBI | |
Marques CJ, Costa P, Vaz B, Carvalho F, Fernandes S, Barros A and Sousa M: Abnormal methylation of imprinted genes in human sperm is associated with oligozoospermia. Mol Hum Reprod. 14:67–74. 2008. View Article : Google Scholar : PubMed/NCBI | |
Montjean D, Ravel C, Benkhalifa M, CohenBacrie P, Berthaut I, Bashamboo A and McElreavey K: Methylation changes in mature sperm deoxyribonucleic acid from oligozoospermic men: Assessment of genetic variants and assisted reproductive technology outcome. Fertil Steril. 100:1241–1247. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi H, Hiura H, John RM, Sato A, Otsu E, Kobayashi N, Suzuki R, Suzuki F, Hayashi C, Utsunomiya T, et al: DNA methylation errors at imprinted loci after assisted conception originate in the parental sperm. Eur J Hum Genet. 17:1582–1591. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pliushch G, Schneider E, Schneider T, El Hajj N, Rösner S, Strowski T and Haaf T: In vitro maturation of oocytes is not associated with altered deoxyribonucleic acid methylation patterns in children from in vitro fertilization or intracytoplasmic sperm injection. Fertil Steril. 103:720–727. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zheng HY, Shi XY, Wang LL, Wu YQ, Chen SL and Zhang L: Study of DNA methylation patterns of imprinted genes in children born after assisted reproductive technologies reveals no imprinting errors: A pilot study. Exp Ther Med. 2:751–755. 2011.PubMed/NCBI | |
Xu J, Zhang A, Zhang Z, Wang P, Qian Y, He L, Shi H, Xing Q and Du J: DNA methylation levels of imprinted and nonimprinted genes DMRs associated with defective human spermatozoa. Andrologia. Jan 25–2016.(Epub ahead of print). View Article : Google Scholar |