1
|
Kharitonenkov A, Shiyanova TL, Koester A,
Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers
JS, Owens RA, et al: FGF-21 as a novel metabolic regulator. J Clin
Invest. 115:1627–1635. 2005. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Hou YT, Li JN, Ren GP, Liu MY, Sun GP,
Wang WF and Li DS: Cloning, expression and glucose regulation
activity of human FGF-21. Yi Chuan. 32:583–587. 2010.(In Chinese).
View Article : Google Scholar : PubMed/NCBI
|
3
|
Adams AC and Kharitonenkov A: FGF21: The
center of a transcriptional nexus in metabolic regulation. Curr
Diabetes Rev. 8:285–293. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gälman C, Lundåsen T, Kharitonenkov A,
Bina HA, Eriksson M, Hafström I, Dahlin M, Amark P, Angelin B and
Rudling M: The circulating metabolic regulator FGF21 is induced by
prolonged fasting and PPARalpha activation in man. Cell Metab.
8:169–174. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Badman MK, Pissios P, Kennedy AR, Koukos
G, Flier JS and Maratos-Flier E: Hepatic fibroblast growth factor
21 is regulated by PPARalpha and is a key mediator of hepatic lipid
metabolism in ketotic states. Cell Metab. 5:426–437. 2007.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Inagaki T, Dutchak P, Zhao G, Ding X,
Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, et
al: Endocrine regulation of the fasting response by
PPARalpha-mediated induction of fibroblast growth factor 21. Cell
Metab. 5:415–425. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Moyers JS, Shiyanova TL, Mehrbod F, Dunbar
JD, Noblitt TW, Otto KA, Reifel-Miller A and Kharitonenkov A:
Molecular determinants of FGF-21 activity-synergy and cross-talk
with PPARgamma signaling. J Cell Physiol. 210:1–6. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Xiao Y, Xu A, Law LS, Chen C, Li H, Li X,
Yang L, Liu S, Zhou Z and Lam KS: Distinct changes in serum
fibroblast growth factor 21 levels in different subtypes of
diabetes. J Clin Endocrinol Metab. 97:E54–E58. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Chen WW, Li L, Yang GY, Li K, Qi XY, Zhu
W, Tang Y, Liu H and Boden G: Circulating FGF-21 levels in normal
subjects and in newly diagnose patients with Type 2 diabetes
mellitus. Exp Clin Endocrinol Diabetes. 116:65–68. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mashili FL, Austin RL, Deshmukh AS, Fritz
T, Caidahl K, Bergdahl K, Zierath JR, Chibalin AV, Moller DE,
Kharitonenkov A and Krook A: Direct effects of FGF21 on glucose
uptake in human skeletal muscle: Implications for type 2 diabetes
and obesity. Diabetes Metab Res Rev. 27:286–297. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Stein S, Bachmann A, Lössner U, Kratzsch
J, Blüher M, Stumvoll M and Fasshauer M: Serum levels of the
adipokine FGF21 depend on renal function. Diabetes care.
32:126–128. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Dushay J, Chui PC, Gopalakrishnan GS,
Varela-Rey M, Crawley M, Fisher FM, Badman MK, Martinez-Chantar ML
and Maratos-Flier E: Increased fibroblast growth factor 21 in
obesity and nonalcoholic fatty liver disease. Gastroenterology.
139:456–463. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang X, Yeung DC, Karpisek M, Stejskal D,
Zhou ZG, Liu F, Wong RL, Chow WS, Tso AW, Lam KS and Xu A: Serum
FGF21 levels are increased in obesity and are independently
associated with the metabolic syndrome in humans. Diabetes.
57:1246–1253. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Li L, Yang G, Ning H, Yang M, Liu H and
Chen W: Plasma FGF-21 levels in type 2 diabetic patients with
ketosis. Diabetes Res Clin Pract. 82:209–213. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ding LJ, Li JC, Fu R, Zhou YJ and Huo GC:
Preparation and characteristic identification of monoclonal
antibody against sulfamethazine. Journal of Northeast Agricultural
University (English edition). 13:145–148. 2006.
|
16
|
Jiang YY, Liu MY, Ren GP, Wang WF, Liu XM
and Li DS: Cloning, expression and purification of mouse fibroblast
growth factor-21 and its function in adipocyte glucose metabolism.
Sheng Wu Hua Xue Yu Sheng Wu Wu Li Jin Zhan Bian Ji Bu. 36:157–164.
2009.(In Chinese).
|
17
|
Guo M, Xu LM, Zhou B, Yin JC, Ren GP and
Li DS: A novel efficient method for B cell epitopes mapping base on
bacterial display. Zhongguo Mianyixue Zazhi. 30:366–372. 2014.(In
Chinese).
|
18
|
Xu WJ, Zhang YJ, Li QQ, Wu Q, Yu XF, Guo
XC, Yin JC, Ren GP and Li DS: Biopharmaceutical Lab, College of
Life Science, Northeast Agricultural University: Systematic mapping
the linear antigenic domains of the porcine circovirus 2b Cap
protein by bacterial display technology. Zhong Guo Yu Fang Shou Yi
Xue Bao Bian Ji Bu. 38:398–402. 2016.(In Chinese).
|
19
|
Xu LM, Yin CK, Ren GP, Tian H, Wang XQ,
Ding LJ and Li DS: Establishment of bacterial display technology
for fab antibody library screening. Xi Bao Yu Fen Zi Mian Yi Xue Za
Zhi. 27:1090–1093. 2011.(In Chinese). PubMed/NCBI
|
20
|
Harvey BR, Georgiou G, Hayhurst A, Jeong
KJ, Iverson BL and Rogers GK: Anchored periplasmic expression, a
versatile technology for the isolation of high-affinity antibodies
from Escherichia coli-expressed libraries. Proc Natl Acad Sci USA.
101:9193–9198. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Wingfield PT: Overview of the purification
of recombinant proteins produced in Escherichia coli. Curr Protoc
Protein Sci Chapter. 6:Unit 6.1. 2003.
|
23
|
Georgiou G: Analysis of large libraries of
protein mutants using flow cytometry. Adv Protein Chem. 55:293–315.
2000. View Article : Google Scholar : PubMed/NCBI
|
24
|
Daugherty PS, Olsen MJ, Iverson BL and
Georgiou G: Development of an optimized expression system for the
screening of antibody libraries displayed on the Escherichia coli
surface. Protein Eng. 12:613–621. 1999. View Article : Google Scholar : PubMed/NCBI
|
25
|
Daugherty PS: Protein engineering with
bacterial display. Curr Opin Struct Biol. 17:474–480. 2007.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Rice JJ, Schohn A, Bessette PH, Boulware
KT and Daugherty PS: Bacterial display using circularly permuted
outer membrane protein OmpX yields high affinity peptide ligands.
Protein Sci. 15:825–836. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kurosu H, Choi M, Ogawa Y, Dickson AS,
Goetz R, Eliseenkova AV, Mohammadi M, Rosenblatt KP, Kliewer SA and
Kuro-o M: Tissue-specific expression of betaKlotho and fibroblast
growth factor (FGF) receptor isoforms determines metabolic activity
of FGF19 and FGF21. J Biol Chem. 282:26687–26695. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ogawa Y, Kurosu H, Yamamoto M, Nandi A,
Rosenblatt KP, Goetz R, Eliseenkova AV, Mohammadi M and Kuro-o M:
BetaKlotho is required for metabolic activity of fibroblast growth
factor 21. Proc Natl Acad Sci USA. 104:7432–7437. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kharitonenkov A, Dunbar JD, Bina HA,
Bright S, Moyers JS, Zhang C, Ding L, Micanovic R, Mehrbod SF,
Knierman MD, et al: FGF-21/FGF-21 receptor interaction and
activation is determined by betaKlotho. J Cell Physiol. 215:1–7.
2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang D, Cummins C, Bayliss S, Sandercock J
and Burls A: Immunoprophylaxis against respiratory syncytial virus
(RSV) with palivizumab in children: A systematic review and
economic evaluation. Health Technol Assess. 12(iii): ix-x. 1–86.
2008.
|