1
|
Haugen BR: Drugs that suppress TSH or
cause central hypothyroidism. Best Pract Res Clin Endocrinol Metab.
23:793–800. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Gereben B, Zavacki AM, Ribich S, Kim BW,
Huang SA, Simonides WS, Zeöld A and Bianco AC: Cellular and
molecular basis of deiodinase-regulated thyroid hormone signaling.
Endocr Rev. 29:898–938. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wrutniak-Cabello C, Casas F and Cabello G:
Thyroid hormone action in mitochondria. J Mol Endocrinol. 26:67–77.
2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Servatius RJ, Natelson BH, Moldow R,
Pogach L, Brennan FX and Ottenweller JE: Persistent neuroendocrine
changes in multiple hormonal axes after a single or repeated
stressor exposures. Stress. 3:263–274. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Helmreich DL, Crouch M, Dorr NP and
Parfitt DB: Peripheral triiodothyronine (T(3)) levels during
escapable and inescapable footshock. Physiol Behav. 87:114–119.
2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kilburn-Watt E, Banati RB and Keay KA:
Altered thyroid hormones and behavioural change in a sub-population
of rat following chronic constriction injury. J Neuroendocrinol.
22:960–970. 2010.PubMed/NCBI
|
7
|
Sabban EL and Kvetnanský R:
Stress-triggered activation of gene expression in catecholaminergic
systems: Dynamics of transcriptional events. Trends Neurosci.
24:91–98. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Han Mei-Jun and Ma Dian-Li: Change of
immune function in psychological stress. Zhong Guo Lin Chuang Kang
Fu. 10:189–192. 2006.(In Chinese).
|
9
|
Hölscher C: Stress impairs performance in
spatial water maze learning tasks. Behav Brain Res. 100:225–235.
1999. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mebis L and Van den Berghe G: Thyroid axis
function and dysfunction in critical illness. Best Pract Res Clin
Endocrinol Metab. 25:745–757. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Iervasi G, Pingitore A, Landi P, Raciti M,
Ripoli A, Scarlattini M, L'Abbate A and Donato L: Low-T3 syndrome:
A strong prognostic predictor of death in patients with heart
disease. Circulation. 107:708–713. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Shelton RC: The use of antidepressants in
novel combination therapies. J Clin Psychiatry. 64(Suppl 2):
S14–S18. 2003.
|
13
|
Armario A, Castellanos JM and Balasch J:
Effect of acute and chronic psychogenic stress on corticoadrenal
and pituitary-thyroid hormones in male rats. Horm Res. 20:241–245.
1984. View Article : Google Scholar : PubMed/NCBI
|
14
|
Turakulov YKh, Burikhanov RB, Patkhitdinov
PP and Myslitskaya AI: Influence of immobilization stress on the
levels of thyroid hormones. Neurosci Behav Physiol. 24:462–464.
1994. View Article : Google Scholar : PubMed/NCBI
|
15
|
Cizza G, Brady LS, Esclapes ME, Blackman
MR, Gold PW and Chrousos GP: Age and gender influence basal and
stress-modulated hypothalamic-pituitary-thyroidal function in
Fischer 344/N rats. Neuroendocrinology. 64:440–448. 1996.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Kondo K, Harbuz MS, Levy A and Lightman
SL: Inhibition of the hypothalamic-pituitary-thyroid axis in
response to lipopolysaccharide is independent of changes in
circulating corticosteroids. Neuroimmunomodulation. 4:188–194.
1997.PubMed/NCBI
|
17
|
Helmreich DL and Tylee D: Thyroid hormone
regulation by stress and behavioral differences in adult male rats.
Horm Behav. 60:284–291. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Fliers E, Korbonits M and Romijn JA:
Hypothalamic-pituitary hormones during critical illness: A dynamic
neuroendocrine response. Clin Neuroendocrinol. 124:115–126.
2014.
|
19
|
Légrádi G, Emerson CH, Ahima RS, Flier JS
and Lechan RM: Leptin prevents fasting-induced suppression of
prothyrotropin-releasing hormone messenger ribonucleic acid in
neurons of the hypothalamic paraventricular nucleus. Endocrinology.
138:2569–2576. 1997. View Article : Google Scholar : PubMed/NCBI
|
20
|
Roelfsema F, Pereira AM, Biermasz NR,
Frolich M, Keenan DM, Veldhuis JD and Romijn JA: Diminished and
irregular TSH secretion with delayed acrophase in patients with
Cushing's syndrome. Eur J Endocrinol. 161:695–703. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hangaard J, Andersen M, Grodum E,
Koldkjaer O and Hagen C: Pulsatile thyrotropin secretion in
patients with Addison's disease during variable glucocorticoid
therapy. J Clin Endocrinol Metab. 81:2502–2507. 1996. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bruhn TO, McFarlane MB, Deckey JE and
Jackson IM: Analysis of pulsatile secretion of thyrotropin and
growth hormone in the hypothyroid rat. Endocrinology.
131:2615–2621. 1992. View Article : Google Scholar : PubMed/NCBI
|
23
|
Su Y, van der Spek R, Foppen R, Kwakkel J,
Fliers E and Kalsbeek A: Effects of adrenalectomy on daily gene
expression rhythms in the rat suprachiasmatic and paraventricular
hypothalamic nuclei and in white adipose tissue. Chronobiol Int.
32:211–224. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Silva EJ, Vendramini V, Restelli A,
Bertolla RP, Kempinas WG and Avellar MC: Impact of adrenalectomy
and dexamethasone treatment on testicular morphology and sperm
parameters in rats: insights into the adrenal control of male
reproduction. Andrology. 2:835–846. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Matos-Santos A, Nobre EL, Costa JG,
Nogueira PJ, Macedo A, Galvão-Teles A and de Castro JJ:
Relationship between the number and impact of stressful life events
and the onset of Graves' disease and toxic nodular goitre. Clin
Endocrinol. 55:15–19. 2001. View Article : Google Scholar
|
26
|
Slavich GM and Irwin MR: From stress to
inflammation and major depressive disorder: a social signal
transduction theory of depression. Psychol Bull. 140:774–815. 2014.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Jiang YQ, Kawashima H, Iwasaki Y, Uchida
K, Sugimoto K and Itoi K: Differential effects of forced
swim-stress on the corticotrophin-releasing hormone and vasopressin
gene transcription in the parvocellular division of the
paraventricular nucleus of rat hypothalamus. Neurosci Lett.
358:201–204. 2004. View Article : Google Scholar : PubMed/NCBI
|
28
|
Haugen BR: Drugs that suppress TSH or
cause central hypothyroidism. Best Pract Res Clin Endocrinol Metab.
23:793–800. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sui L, Ren WW and Li BM: Administration of
thyroid hormone increases reelin and brain-derived neurotrophic
factor expression in rat hippocampus in vivo. Brain Res. 1313:9–24.
2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kong WM, Martin NM, Smith KL, Gardiner JV,
Connoley IP, Stephens DA, Dhillo WS, Ghatei MA, Small CJ and Bloom
SR: Triiodothyronine stimulates food intake via the hypothalamic
ventromedial nucleus independent of changes in energy expenditure.
Endocrinology. 145:5252–5258. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Caria MA, Dratman MB, Kow LM, Mameli O and
Pavlides C: Thyroid hormone action: Nongenomic modulation of
neuronal excitability in the hippocampus. J Neuroendocrinol.
21:98–107. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Davis PJ, Leonard JL and Davis FB:
Mechanisms of nongenomic actions of thyroid hormone. Front
Neuroendocrinol. 29:211–218. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Guo TY, Liu LJ, Xu L, Zhang JC, Li SX,
Chen C, He LG, Chen YM, Yang HD, Lu L and Hashimoto K: Alterations
of the daily rhythms of HPT axis induced by chronic unpredicted
mild stress in rats. Endocrine. 48:1–7. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Helmreich DL, Parfitt DB, Lu XY, Akil H
and Watson SJ: Relation between the hypothalamic-pituitary-thyroid
(HPT) axis and the hypothalamic-pituitary-adrenal (HPA) axis during
repeated stress. Neuroendocrinology. 81:183–192. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kakucksa I, Qi Y and Lechan RM: Changes in
adrenal status affect hypothalamic thyrotropin-releasing hormone
gene expression in parallel with corticotropin-releasing hormone.
Endocrinology. 136:2795–2802. 1995. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bianco AC, Nunes MT, Hell NS and Maciel
RM: The role of glucocorticoids in the stress-induced reduction of
extrathyroidal 3,5,3′-triiodothyronine generation in rats.
Endocrinology. 120:1033–1038. 1987. View Article : Google Scholar : PubMed/NCBI
|
37
|
Luo LG, Bruhn T and Jackson IM:
Glucocorticoids stimulate thyrotropin-releasing hormone gene
expression in cultured hypothalamic neurons. Endocrinology.
136:4945–4950. 1995. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lechan RM and Fekete C: The TRH neuron: A
hypothalamic integrator of energy metabolism. Prog Brain Res.
153:209–235. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Herman JP and Cullinan WE: Neurocircuitry
of stress: Central control of the hypothalamic-adrenocortical axis.
Trends Neurosci. 20:78–84. 1997. View Article : Google Scholar : PubMed/NCBI
|
40
|
Perello M, Friedman T, Paez-Espinosa V,
Shen X, Stuart RC and Nillni EA: Thyroid hormones selectively
regulate the posttranslational processing of
prothyrotropin-releasing hormone in the paraventricular nucleus of
the hypothalamus. Endocrinology. 147:2705–2716. 2006. View Article : Google Scholar : PubMed/NCBI
|
41
|
Heuer H, Schäfer MK and Bauer K: The
thyrotropin-releasing hormone-degrading ectoenzyme: The third
element of the thyrotropin-releasing hormone-signaling system.
Thyroid. 8:915–920. 1998. View Article : Google Scholar : PubMed/NCBI
|
42
|
Sánchez E, Vargas MA, Singru PS, Pascual
I, Romero F, Fekete C, Charli JL and Lechan RM: Tanycyte
pyroglutamyl peptidase II contributes to regulation of the
hypothalamic-pituitary-thyroid axis through glial-axonal
associations in the median eminence. Endocrinology. 150:2283–2291.
2009. View Article : Google Scholar : PubMed/NCBI
|
43
|
Selye H: A syndrome produced by diverse
nocuous agents. Nature. 10:230–231. 1998.
|
44
|
Wang J and Zhang J: The effect of cold
stress on the HPT axis of chicken. Zhong Guo Chu Mu Za Zhi.
44:39–42. 2008.(In Chinese).
|