1
|
Bodine SC, Latres E, Baumhueter S, Lai VK,
Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K,
et al: Identification of ubiquitin ligases required for skeletal
muscle atrophy. Science. 294:1704–1708. 2001. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kandarian S: The molecular basis of
skeletal muscle atrophy-parallels with osteoporotic signaling. J
Musculoskelet Neuronal Interact. 8:340–341. 2008.PubMed/NCBI
|
3
|
Piccirillo R, Demontis F, Perrimon N and
Goldberg AL: Mechanisms of muscle growth and atrophy in mammals and
Drosophila. Dev Dyn. 243:201–215. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sun H, Qiu J, Chen Y, Yu M, Ding F and Gu
X: Proteomic and bioinformatic analysis of differentially expressed
proteins in denervated skeletal muscle. Int J Mol Med.
33:1586–1596. 2014.PubMed/NCBI
|
5
|
Sun H, Gong Y, Qiu J, Chen Y, Ding F and
Zhao Q: TRAF6 inhibition rescues dexamethasone-induced muscle
atrophy. Int J Mol Sci. 15:11126–11141. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Paul PK, Bhatnagar S, Mishra V, Srivastava
S, Darnay BG, Choi Y and Kumar A: The E3 ubiquitin ligase TRAF6
intercedes in starvation-induced skeletal muscle atrophy through
multiple mechanisms. Mol Cell Biol. 32:1248–1259. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wu H and Arron JR: TRAF6, a molecular
bridge spanning adaptive immunity, innate immunity and
osteoimmunology. Bioessays. 25:1096–1105. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhang X, Zhang J, Zhang L, van Dam H and
ten Dijke P: UBE2O negatively regulates TRAF6-mediated NF-κB
activation by inhibiting TRAF6 polyubiquitination. Cell Res.
23:366–377. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Nakamura K, Kimple AJ, Siderovski DP and
Johnson GL: PB1 domain interaction of p62/sequestosome 1 and MEKK3
regulates NF-kappaB activation. J Biol Chem. 285:2077–2089. 2010.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Lamothe B, Campos AD, Webster WK,
Gopinathan A, Hur L and Darnay BG: The RING domain and first zinc
finger of TRAF6 coordinate signaling by interleukin-1,
lipopolysaccharide and RANKL. J Biol Chem. 283:24871–24880. 2008.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Shi CS and Kehrl JH: TRAF6 and A20
regulate lysine 63-linked ubiquitination of Beclin-1 to control
TLR4-induced autophagy. Sci Signal. 3:ra422010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Paul PK and Kumar A: TRAF6 coordinates the
activation of autophagy and ubiquitin-proteasome systems in
atrophying skeletal muscle. Autophagy. 7:555–556. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Paul PK, Gupta SK, Bhatnagar S, Panguluri
SK, Darnay BG, Choi Y and Kumar A: Targeted ablation of TRAF6
inhibits skeletal muscle wasting in mice. J Cell Biol.
191:1395–1411. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ouyang YB, Xu L, Yue S, Liu S and Giffard
RG: Neuroprotection by astrocytes in brain ischemia: Importance of
microRNAs. Neurosci Lett. 565:53–58. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Soares RJ, Cagnin S, Chemello F,
Silvestrin M, Musaro A, De Pitta C, Lanfranchi G and Sandri M:
Involvement of microRNAs in the regulation of muscle wasting during
catabolic conditions. J Biol Chem. 289:21909–25. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kirby TJ, Chaillou T and McCarthy JJ: The
role of microRNAs in skeletal muscle health and disease. Front
Biosci (Landmark Ed). 20:37–77. 2015. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Janssen HL, Reesink HW, Lawitz EJ, Zeuzem
S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A,
Zhou Y, Persson R, et al: Treatment of HCV infection by targeting
microRNA. N Engl J Med. 368:1685–1694. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
van der Ree MH, van der Meer AJ, de
Bruijne J, Maan R, van Vliet A, Welzel TM, Zeuzem S, Lawitz EJ,
Rodriguez-Torres M, Kupcova V, Wiercinska-Drapalo A, et al:
Long-term safety and efficacy of microRNA-targeted therapy in
chronic hepatitis C patients. Antiviral Res. 111:53–59. 2014.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Chen JF, Mandel EM, Thomson JM, Wu Q,
Callis TE, Hammond SM, Conlon FL and Wang DZ: The role of
microRNA-1 and microRNA-133 in skeletal muscle proliferation and
differentiation. Nat Genet. 38:228–233. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Shen H, Liu T, Fu L, Zhao S, Fan B, Cao J
and Li X: Identification of microRNAs involved in
dexamethasone-induced muscle atrophy. Molecular and cellular
biochemistry. 381:105–113. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yu B, Qian T, Wang Y, Zhou S, Ding G, Ding
F and Gu X: miR-182 inhibits Schwann cell proliferation and
migration by targeting FGF9 and NTM, respectively at an early stage
following sciatic nerve injury. Nucleic Acids Res. 40:10356–10365.
2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang D, Liu M, Ding F and Gu X:
Expression of myostatin RNA transcript and protein in gastrocnemius
muscle of rats after sciatic nerve resection. J Muscle Res Cell
Motil. 27:37–44. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen JF, Callis TE and Wang DZ: microRNAs
and muscle disorders. J Cell Sci. 122:13–20. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Eisenberg I, Alexander MS and Kunkel LM:
miRNAS in normal and diseased skeletal muscle. J Cell Mol Med.
13:2–11. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chen Y, Melton DW, Gelfond JA, McManus LM
and Shireman PK: MiR-351 transiently increases during muscle
regeneration and promotes progenitor cell proliferation and
survival upon differentiation. Physiol Genomics. 44:1042–1051.
2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kumar A, Bhatnagar S and Paul PK: TWEAK
and TRAF6 regulate skeletal muscle atrophy. Curr Opin Clin Nutr
Metab Care. 15:233–9. 2012. View Article : Google Scholar : PubMed/NCBI
|