1
|
Kato M and Natarajan R: Diabetic
nephropathy-emerging epigenetic mechanisms. Nat Rev Nephrol.
10:517–530. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhang Y, Xiao HQ, Wang Y, Yang ZS, Dai LJ
and Xu YC: Differential expression and therapeutic efficacy of
microRNA-346 in diabetic nephropathy mice. Exp Ther Med.
10:106–112. 2015.PubMed/NCBI
|
3
|
Zhang L, Zhang J, Liu X, Liu S and Tian J:
Tribbles 3 regulates the fibrosis cytokine TGF-β1 through
ERK1/2-MAPK signaling pathway in diabetic nephropathy. J Immunol
Res. 2014:2403962014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Miller CG, Pozzi A, Zent R and
Schwarzbauer JE: Effects of high glucose on integrin activity and
fibronectin matrix assembly by mesangial cells. Mol Biol Cell.
25:2342–2350. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Galliera E, Tacchini L and Romanelli MM
Corsi: Matrix metalloproteinases as biomarkers of disease: Updates
and new insights. Clin Chem Lab Med. 53:349–355. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Tauro M, McGuire J and Lynch CC: New
approaches to selectively target cancer-associated matrix
metalloproteinase activity. Cancer Metastasis Rev. 33:1043–1057.
2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Piperi C and Papavassiliou AG: Molecular
mechanisms regulating matrix metalloproteinases. Curr Top Med Chem.
12:1095–1112. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Fukami K, Yamagishi S, Coughlan MT,
Harcourt BE, Kantharidis P, Thallas-Bonke V, Okuda S, Cooper ME and
Forbes JM: Ramipril inhibits AGE-RAGE-induced matrix
metalloproteinase-2 activation in experimental diabetic
nephropathy. Diabetol Metab Syndr. 6:862014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhong Y, Zhang X, Cai X, Wang K, Chen Y
and Deng Y: Puerarin attenuated early diabetic kidney injury
through down-regulation of matrix metalloproteinase 9 in
streptozotocin-induced diabetic rats. PLoS One. 9:e856902014.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Lu H, Cao X, Zhang H, Sun G, Fan G, Chen L
and Wang S: Imbalance between MMP-2, 9 and TIMP-1 promote the
invasion and metastasis of renal cell carcinoma via SKP2 signaling
pathways. Tumour Biol. 35:9807–9813. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sun H, Ge N, Shao M, Cheng X, Li Y, Li S
and Shen J: Lumbrokinase attenuates diabetic nephropathy through
regulating extracellular matrix degradation in
Streptozotocin-induced diabetic rats. Diabetes Res Clin Pract.
100:85–95. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Thrailkill KM, Bunn R Clay and Fowlkes JL:
Matrix metalloproteinases: Their potential role in the pathogenesis
of diabetic nephropathy. Endocrine. 35:1–10. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lewandowski KC, Banach E, Bieńkiewicz M
and Lewiński A: Matrix metalloproteinases in type 2 diabetes and
non-diabetic controls: Effects of short-term and chronic
hyperglycaemia. Arch Med Sci. 7:294–303. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Li SY, Huang PH, Yang AH, Tarng DC, Yang
WC, Lin CC, Chen JW, Schmid-Schönbein G and Lin SJ: Matrix
metalloproteinase-9 deficiency attenuates diabetic nephropathy by
modulation of podocyte functions and dedifferentiation. Kidney Int.
86:358–369. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Potier M, Elliot SJ, Tack I, Lenz O,
Striker GE, Striker LJ and Karl M: Expression and regulation of
estrogen receptors in mesangial cells: Influence on matrix
metalloproteinase-9. J Am Soc Nephrol. 12:241–251. 2001.PubMed/NCBI
|
16
|
Bhatt MP, Lim YC, Hwang J, Na S, Kim YM
and Ha KS: C-peptide prevents hyperglycemia-induced endothelial
apoptosis through inhibition of reactive oxygen species-mediated
transglutaminase 2 activation. Diabetes. 62:243–253. 2013.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Al-Rasheed NM, Willars GB and Brunskill
NJ: C-peptide signals via Galpha i to protect against
TNF-alpha-mediated apoptosis of opossum kidney proximal tubular
cells. J Am Soc Nephrol. 17:986–995. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hills CE, Brunskill NJ and Squires PE:
C-peptide as a therapeutic tool in diabetic nephropathy. Am J
Nephrol. 31:389–397. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wahren J, Kallas A and Sima AA: The
clinical potential of C-peptide replacement in type 1 diabetes.
Diabetes. 61:761–772. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Samnegård B, Jacobson SH, Jaremko G,
Johansson BL and Sjöquist M: Effects of C-peptide on glomerular and
renal size and renal function in diabetic rats. Kidney Int.
60:1258–1265. 2001. View Article : Google Scholar : PubMed/NCBI
|
21
|
Huang DY, Richter K, Breidenbach A and
Vallon V: Human C-peptide acutely lowers glomerular hyperfiltration
and proteinuria in diabetic rats: A dose-response study. Naunyn
Schmiedebergs Arch Pharmacol. 365:67–73. 2002. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sun W, Gao X, Zhao X, Cui D and Xia Q:
Beneficial effects of C-peptide on renal morphology in diabetic
rats. Acta Biochim Biophys Sin (Shanghai). 42:893–899. 2010.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Ishii T, Fukano K, Shimada K, Kamikawa A,
Okamatsu-Ogura Y, Terao A, Yoshida T, Saito M and Kimura K:
Proinsulin C-peptide activates α-enolase: Implications for
C-peptide-cell membrane interaction. J Biochem. 152:53–62. 2012.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Luppi P, Geng X, Cifarelli V, Drain P and
Trucco M: C-peptide is internalized in human endothelial smooth
muscle cells via early endosomes. Diabetologia. 52:2218–2228. 2009.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Lindahl E, Nyman U, Zaman F, Palmberg C,
Cascante A, Shafqat J, Takigawa M, Sävendahl L, Jörnvall H and
Joseph B: Proinsulin C-peptide regulates ribosomal RNA expression.
J Biol Chem. 285:3462–3469. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Li Y, Zhao M, Li B and Qi J: Dynamic
localization and functional implications of C-peptide might for
suppression of iNOS in high glucose-stimulated rat mesangial cells.
Mol Cell Endocrinol. 381:255–260. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Li Y, Liu D, Liu Y, Li E, Wang H, Liu K
and Qi J: Protein nitration promotes inducible nitric oxide
synthase transcription mediated by NF-κB in high glucose-stimulated
human lens epithelial cells. Mol Cell Endocrinol. 370:78–86. 2013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Lehners A, Lange S, Niemann G, Rosendahl
A, Meyer-Schwesinger C, Oh J, Stahl R, Ehmke H, Benndorf R, Klinke
A, et al: Myeloperoxidase deficiency ameliorates progression of
chronic kidney disease in mice. Am J Physiol Renal Physiol.
307:F407–F417. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kuno Y, Iyoda M, Shibata T, Hirai Y and
Akizawa T: Sildenafil, a phosphodiesterase type 5 inhibitor,
attenuates diabetic nephropathy in non-insulin-dependent otsuka
long-evans tokushima fatty rats. Br J Pharmacol. 162:1389–1400.
2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Samnegård B, Jacobson SH, Jaremko G,
Johansson BL, Ekberg K, Isaksson B, Eriksson L, Wahren J and
Sjöquist M: C-peptide prevents glomerular hypertrophy and mesangial
matrix expansion in diabetic rats. Nephrol Dial Transplant.
20:532–538. 2005. View Article : Google Scholar : PubMed/NCBI
|