1
|
Liang R, Chen TX, Wang ZQ, Jin KW, Zhang
LY, Yan QN, Zhang HH and Wang WP: A respective analysis of the
clinicopathological characteristics of large cell carcinoma of
lung. Exp Ther Med. 9:197–202. 2015.PubMed/NCBI
|
2
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2013. CA Cancer J Clin. 63:11–30. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Mrazek AA and Chao C: Surviving cutaneous
melanoma: A clinical review of follow-up practices, surveillance,
and management of recurrence. Surg Clin North Am. 94:989–1002,
vii-viii. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Singhal S, Vachani A, Antin-Ozerkis D,
Kaiser LR and Albelda SM: Prognostic implications of cell cycle,
apoptosis, and angiogenesis biomarkers in non-small cell lung
cancer: A review. Clin Cancer Res. 11:3974–3986. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Horton JD, Cohen JC and Hobbs HH:
Molecular biology of PCSK9: Its role in LDL metabolism. Trends
Biochem Sci. 32:71–77. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Park SW, Moon YA and Horton JD:
Post-transcriptional regulation of low density lipoprotein receptor
protein by proprotein convertase subtilisin/kexin type 9a in mouse
liver. J Biol Chem. 279:50630–50638. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Benjannet S, Rhainds D, Essalmani R, Mayne
J, Wickham L, Jin W, Asselin MC, Hamelin J, Varret M and Allard D:
NARC-1/PCSK9 and its natu-ral mutants: Zymogen cleavage and effects
on the low density lipoprotein (LDL) receptor and LDL cholesterol.
J Biol Chem. 279:48865–48875. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Peterson AS, Fong LG and Young SG: PCSK9
function and physiology. J Lipid Res. 49:1595–1599. 2008.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Abifadel M, Varret M, Rabès JP, Allard D,
Ouguerram K, Devillers M, Cruaud C, Benjannet S, Wickham L, Erlich
D, et al: Mutations in PCSK9 cause autosomal dominant
hypercholesterolemia. Nat Genet. 34:154–156. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Cohen J, Pertsemlidis A, Kotowski IK,
Graham R, Garcia CK and Hobbs HH: Low LDL holesterol in individuals
of African descent resulting from frequent nonsense mutations in
PCSK9. Nat Genet. 37:161–165. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Cohen JC, Boerwinkle E, Mosley TH Jr and
Hobbs HH: Sequence variations in PCSK9, low LDL, and protection
against coronary heart disease. N Engl J Med. 354:1264–1272. 2006.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Seidah NG and Prat A: The biology and
therapeutic targeting of the proprotein convertases. Nat Rev Drug
Discov. 11:367–383. 2012. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Lan H, Pang L, Smith MM, Levitan D, Ding
W, Liu L, Shan L, Shah VV, Laverty M, Arreaza G, et al: Proprotein
convertase subtilisin/kexin type 9 (PCSK9) affects gene expression
pathways beyond cholesterol metabolism in liver cells. J Cell
Physiol. 224:273–281. 2010.PubMed/NCBI
|
14
|
Ranheim T, Mattingsdal M, Lindvall JM,
Holla OL, Berge KE, Kulseth MA and Leren TP: Genome-wide expression
analysis of cells expressing gain of function mutant D374Y-PCSK9. J
Cell Physiol. 217:459–467. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zaid A, Roubtsova A, Essalmani R,
Marcinkiewicz J, Chamberland A, Hamellin J, Tremblay M, Jacques H,
Jin W, Davignon J, et al: Proprotein convertase subtilisin/kexin
type 9 (PCSK9): Hepatocyte-specific low-density lipoprotein
receptor degradation and critical role in mouse liver regeneration.
Hepatology. 48:646–654. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Mbikay M, Sirois F, Mayne J, Wang GS, Chen
A, Dewpura T, Prat A, Seidah NG, Chretien M and Scott FW:
PCSK9-deficient mice exhibit impaired glucose tolerance and
pancreatic islet abnormalities. FEBS Lett. 584:701–706. 2010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Sun XW, Essalmani R, Day R, Khatib AM,
Seidah NG and Prat A: Proprotein convertase subtilisin/kexin type 9
deficiency reduces melanoma metastasis in liver. Neoplasia.
14:1122–1131. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Faitova J, Krekac D, Hrstka R and Vojtesek
B: Endoplasmic reticulum stress and apoptosis. Cell Mol Biol Lett.
11:488–505. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chiang LW, Grenier JM, Ettwiller L,
Jenkins LP, Ficenec D, Martin J, Jin F, DiStefano PS and Wood A: An
orchestrated gene expression component of neuronal programmed cell
death revealed by cDNA array analysis. Proc Natl Acad Sci USA.
98:2814–2819. 2001. View Article : Google Scholar : PubMed/NCBI
|
20
|
LaCasse EC, Mahoney DJ, Cheung HH,
Plenchette S, Baird S and Korneluk RG: IAP-targeted therapies for
cancer. Oncogene. 27:6252–6275. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Adams JM and Cory S: The Bcl-2 apoptotic
switch in cancer development and therapy. Oncogene. 26:1324–1337.
2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Pettersson F, Dalgleish AG, Bissonnette RP
and Colston KW: Retinoids cause apoptosis in pancreatic cancer
cells via activation of RAR-gamma and altered expression of
Bcl-2/Bax. Br J Cancer. 87:555–561. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Dufey E, Sepulveda D, Rojas-Rivera D and
Hetz C: Cellular mechanisms of endoplasmic reticulum stress
signaling in health and disease. 1. An overview. Am J Physiol Cell
Physiol. 307:C582–C594. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yuan T, Luo BL, Wei TH, Zhang L, He BM and
Niu RC: Salubrinal protects against cigarette smoke extract-induced
HBEpC apoptosis likely via regulating the activity of PERK-eIF2α
signaling pathway. Arch Med Res. 43:522–529. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Stockwell SR, Platt G, Barrie SE,
Zoumpoulidou G, Te Poele RH, Aherne GW, Wilson SC, Sheldrake P,
McDonald E, Venet M, et al: Mechanism-based screen for G1/S
checkpoint activators identifies a selective activator of
EIF2AK3/PERK signalling. PLoS One. 7:e285682012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Duan Z, Zhao J, Fan X, Tang C, Liang L,
Nie X, Liu J, Wu Q and Xu G: The PERK-eIF2α signaling pathway is
involved in TCDD-induced ER stress in PC12 cells. Neurotoxicology.
44:149–159. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Jiang Q, Li F, Shi K, Wu P, An J, Yang Y
and Xu C: Involvement of p38 in signal switching from autophagy to
apoptosis via the PERK/eIF2α/ATF4 axis in selenite-treated NB4
cells. Cell Death Dis. 5:e12702014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu CY, Schroder M and Kaufman RJ:
Ligand-independent dimerization activates the stress response
kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J
Biol Chem. 275:24881–24885. 2000. View Article : Google Scholar : PubMed/NCBI
|
29
|
Szegezdi E, Logue SE, Gorman AM and Samali
A: Mediators of endoplas-mic reticulum stress-induced apoptosis.
EMBO Rep. 7:880–885. 2006. View Article : Google Scholar : PubMed/NCBI
|