1
|
Meng T, Shi B, Zheng Q, Wang Y and Li S:
Clinical and epidemiologic studies of nonsyndromic cleft lip and
palate in china: Analysis of 4268 cases. Ann Plast Surg.
57:264–269. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Maestri NE, Beaty TH, Hetmanski J, Smith
EA, McIntosh I, Wyszynski DF, Liang KY, Duffy DL and VanderKolk C:
Application of transmission disequilibrium tests to nonsyndromic
oral clefts: Including candidate genes and environmental exposures
in the models. Am J Med Genet. 73:337–344. 1997. View Article : Google Scholar : PubMed/NCBI
|
3
|
Schliekelman P and Slatkin M: Multiplex
relative risk and estimation of the number of loci underlying an
inherited disease. Am J Hum Genet. 71:1369–1385. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wyszynski DF, Duffy DL and Beaty TH:
Maternal cigarette smoking and oral clefts: A meta-analysis. Cleft
Palate Craniofac J. 34:206–210. 1997. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lidral AC and Moreno LM: Progress toward
discerning the genetics of cleft lip. Curr Opin Pediatr.
17:731–739. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lidral AC and Murray JC: Genetic
approaches to identify disease genes for birth defects with cleft
lip/palate as a model. Birth Defects Res A Clin Mol Teratol.
70:893–901. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Shi M, Wehby GL and Murray JC: Review on
genetic variants and maternal smoking in the etiology of oral
clefts and other birth defects. Birth Defects Res C Embryo Today.
84:16–29. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bernstein E, Kim SY, Carmell MA, Murchison
EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV and Hannon
GJ: Dicer is essential for mouse development. Nat Genet.
35:215–217. 2003. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Chen JF, Murchison EP, Tang R, Callis TE,
Tatsuguchi M, Deng Z, Rojas M, Hammond SM, Schneider MD, Selzman
CH, et al: Targeted deletion of Dicer in the heart leads to dilated
cardiomyopathy and heart failure. Proc Natl Acad Sci USA.
105:2111–2116. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Murchison EP, Stein P, Xuan Z, Pan H,
Zhang MQ, Schultz RM and Hannon GJ: Critical roles for Dicer in the
female germline. Genes Dev. 21:682–693. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Shalgi R, Brosh R, Oren M, Pilpel Y and
Rotter V: Coupling transcriptional and post-transcriptional miRNA
regulation in the control of cell fate. Aging (Albany NY).
1:762–770. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Alvarez-Garcia I and Miska EA: MicroRNA
functions in animal development and human disease. Development.
132:4653–4662. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wienholds E, Koudijs MJ, van Eeden FJ,
Cuppen E and Plasterk RH: The microRNA-producing enzyme Dicer1 is
essential for zebrafish development. Nat Genet. 35:217–218. 2003.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Eberhart JK, He X, Swartz ME, Yan YL, Song
H, Boling TC, Kunerth AK, Walker MB, Kimmel CB and Postlethwait JH:
MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis. Nat
Genet. 40:290–298. 2008. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Hornstein E and Shomron N: Canalization of
development by microRNAs. Nat Genet. 38 Suppl:S20–S24. 2006.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Lee CT, Risom T and Strauss WM: MicroRNAs
in mammalian development. Birth Defects Res C Embryo Today.
78:129–139. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Shalgi R, Lieber D, Oren M and Pilpel Y:
Global and local architecture of the mammalian
microRNA-transcription factor regulatory network. PLoS Comput Biol.
3:e1312007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Song L and Tuan RS: MicroRNAs and cell
differentiation in mammalian development. Birth Defects Res C
Embryo Today. 78:140–149. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Qiu WL: Oral and maxillofacial
surgeryCongenital cleft lip, facial cleft and palate cleft. 4th
edition. Beijing People's Medical Publishing House Press; Beijing:
pp. 3692000
|
20
|
Qiu WL: Oral and maxillofacial
surgeryCongenital cleft lip, facial cleft and palate cleft. 4th
edition. Beijing People's Medical Publishing House Press; Beijing:
pp. 374–398. 2000
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Cadigan KM and Nusse R: Wnt signaling: A
common theme in animal development. Genes Dev. 11:3286–3305. 1997.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Bejsovec A: Wnt pathway activation: New
relations and locations. Cell. 120:11–14. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Dale RM, Sisson BE and Topczewski J: The
emerging role of Wnt/PCP signaling in organ formation. Zebrafish.
6:9–14. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chhabra R, Dubey R and Saini N:
Cooperative and individualistic functions of the microRNAs in the
miR-23a~27a~24-2 cluster and its implication inhuman diseases. Mol
Cancer. 9:2322010. View Article : Google Scholar : PubMed/NCBI
|
26
|
He F, Xiong W, Wang Y, Li L, Liu C,
Yamagami T, Taketo MM, Zhou C and Chen Y: Epithelial Wnt/β-catenin
signaling regulates palatal shelf fusion through regulation of
Tgfβ3 expression. Dev Biol. 350:511–519. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yu J, Chen Y, Qin L, Cheng L, Ren G, Cong
P, Mo D and He Z: Effect of miR-205 on 3T3-L1 preadipocyte
differentiation through targeting to glycogen synthase kinase 3
beta. Biotechnol Lett. 36:1233–1243. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kim M, Datta A, Brakeman P, Yu W and
Mostov KE: Polarity proteins PAR6 and aPKC regulate cell death
through GSK-3beta in 3D epithelial morphogenesis. J Cell Sci.
120:2309–2317. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Liu KJ, Arron JR, Stankunas K, Crabtree GR
and Longaker MT: Chemical rescue of cleft palate and midline
defects in conditional GSK-3beta mice. Nature. 446:79–82. 2007.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Hirata H, Ueno K, Nakajima K, Tabatabai
ZL, Hinoda Y, Ishii N and Dahiya R: Genistein downregulates
onco-miR-1260b and inhibits Wnt-signalling in renal cancer cells.
Br J Cancer. 108:2070–2078. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Iwata J, Suzuki A, Pelikan RC, Ho TV,
Sanchez-Lara PA, Urata M, Dixon MJ and Chai Y: Smad4-Irf6 genetic
interaction and TGFβ-mediated IRF6 signaling cascade are crucial
for palatal fusion in mice. Development. 140:1220–1230. 2013.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Christensen K, Juel K, Herskind AM and
Murray JC: Long term follow up study of survival associated with
cleft lip and palate at birth. BMJ. 328:14052004. View Article : Google Scholar : PubMed/NCBI
|
33
|
de Filho PA Andra, Letra A, Cramer A,
Prasad JL, Garlet GP, Vieira AR, Ferris RL and Menezes R: Insights
from studies with oral cleft genes suggest associations between
WNT-pathway genes and risk of oral cancer. J Dent Res. 90:740–746.
2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Parr BA, Shea MJ, Vassileva G and McMahon
AP: Mouse Wnt genes exhibit discrete domains of expression in the
early embryonic CNS and limb buds. Development. 119:247–261.
1993.PubMed/NCBI
|
35
|
He F, Xiong W, Yu X, Espinoza-Lewis R, Liu
C, Gu S, Nishita M, Suzuki K, Yamada G, Minami Y and Chen Y: Wnt5a
regulates directional cell migration and cell proliferation via
Ror2-mediated noncanonical pathway in mammalian palate development.
Development. 135:3871–3879. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chiquet BT, Blanton SH, Burt A, Ma D, Stal
S, Mulliken JB and Hecht JT: Variation in WNT genes is associated
with non-syndromic cleft lip with or without cleft palate. Hum Mol
Genet. 17:2212–2218. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Juriloff DM, Harris MJ, McMahon AP,
Carroll TJ and Lidral AC: Wnt9b is the mutated gene involved in
multifactorial nonsyndromic cleft lip with or without cleft palate
in A/WySn mice, as confirmed by a genetic complementation test.
Birth Defects Res A Clin Mol Teratol. 76:574–579. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lin C, Fisher AV, Yin Y, Maruyama T, Veith
GM, Dhandha M, Huang GJ, Hsu W and Ma L: The inductive role of
Wnt-β-Catenin signaling in the formation of oral apparatus. Dev
Biol. 356:40–50. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kawakami Y, Capdevila J, Büscher D, Itoh
T, Rodríguez Esteban C and Izpisúa Belmonte JC: WNT signals control
FGF-dependent limb initiation and AER induction in the chick
embryo. Cell. 104:891–900. 2001. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kim SH, Shin J, Park HC, Yeo SY, Hong SK,
Han S, Rhee M, Kim CH, Chitnis AB and Huh TL: Specification of an
anterior neuroectoderm patterning by Frizzled8a-mediated Wnt8b
signalling during late gastrulation in zebrafish. Development.
129:4443–4455. 2002.PubMed/NCBI
|