Biocompatibility of polypropylene mesh scaffold with adipose-derived stem cells
- Authors:
- Published online on: April 13, 2017 https://doi.org/10.3892/etm.2017.4338
- Pages: 2922-2926
-
Copyright: © Cheng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
In this study, we investigated the rejection of the synthetic patch and human tissues in the host. We observed the growth of adipose-derived stem cells (ADSCs) cultured with polypropylene mesh in vitro. The results of flow cytometry showed that the expression of CD44, CD73, CD90, CD45, CD14 and CD34 was 98.54, 95.32, 98.49, 1.21, 3.01 and 2.14%, respectively. ADSCs were isolated from rabbit subcutaneous adipose tissue after collagenase digestion, filtration and centrifugation. The ADSCs of passage 3 were seeded onto the polypropylene mesh scaffolds. New Zealand White female breeder rabbits were implanted with polypropylene mesh, ADSC-fixed polypropylene mesh in the abdomen. After 4 weeks, adhesion was performed and the erosion of the mesh was evaluated. It was found that polypropylene mesh, ADSC-fixed polypropylene mesh all had different degrees of corrosion, and adhesion, but polypropylene mesh was more corroded. ADSC-fixed polypropylene mesh induced a milder chronic inflammation response compared with polypropylene, had significantly lower scores for inflammation (t=11.083), and had significantly higher scores for neovascularization (t=14.362) and fibroblastic proliferation (t=15.979). The relative amount of VEGF mRNA was significantly lower for ADSC-fixed polypropylene compared with the other polypropylene meshes (t=94.6). In conclusion, polypropylene mesh scaffold with ADSCs exhibit excellent cellular compatibility and are promising in clinical practice.