1
|
Dubeau MF, Iacucci M, Beck PL, Moran GW,
Kaplan GG, Ghosh S and Panaccione R: Drug-induced inflammatory
bowel disease and IBD-like conditions. Inflamm Bowel Dis.
19:445–456. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ananthakrishnan AN: Epidemiology and risk
factors for IBD. Nat Rev Gastroenterol Hepatol. 12:205–217. 2015.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Mileva S, Galunska B, Gospodinova M,
Gerova D and Svinarov D: Vitamin D3 status in children with acute
diarrhea. Integr Food Nutr Metab. 1:1–6. 2014.
|
4
|
Hirai F and Matsui T: Status of food
intake and elemental nutrition in patients with Crohn's disease.
Integr Food Nutr Metab. 2:148–150. 2015.
|
5
|
Naito Y, Takagi T and Yoshikawa T:
Neutrophil-dependent oxidative stress in ulcerative colitis. J Clin
Biochem Nutr. 41:18–26. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sann H, Erichsen JV, Hessmann M, Pahl A
and Hoffmeyer A: Efficacy of drugs used in the treatment of IBD and
combinations thereof in acute DSS-induced colitis in mice. Life
Sci. 92:708–718. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Piechota-Polanczyk A and Fichna J: Review
article: The role of oxidative stress in pathogenesis and treatment
of inflammatory bowel diseases. Naunyn Schmiedebergs Arch
Pharmacol. 387:605–620. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhu H and Li YR: Oxidative stress and
redox signaling mechanisms of inflammatory bowel disease: Updated
experimental and clinical evidence. Exp Biol Med (Maywood).
237:474–480. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Almenier HA, Al Menshawy HH, Maher MM and
Al Gamal S: Oxidative stress and inflammatory bowel disease. Front
Biosci (Elite Ed). 4:1335–1344. 2012. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Shori AB and Baba AS: Fermented milk
derives bioactive peptides with antihypertensive effects. Integr
Food Nutr Metab. 2:178–181. 2015.
|
11
|
McCann MJ, Dalziel JE, Bibiloni R and
Barnett MPG: An integrated approach to assessing the bio-activity
of nutrients in vitro: The anti-oxidant effects of catechin and
chlorogenic acid as an example. Integr Food Nutr Metab. 2:197–204.
2015. View Article : Google Scholar
|
12
|
Mahmoud AM, Yang W and Bosland MC: Soy
isoflavones and prostate cancer: A review of molecular mechanisms.
J Steroid Biochem Mol Biol. 140:116–132. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yin J, Wu M, Duan J, Liu G, Cui Z, Zheng
J, Chen S, Ren W, Deng J, Tan X, et al: Pyrrolidine dithiocarbamate
inhibits NF-KappaB activation and upregulates the expression of
Gpx1, Gpx4, occludin, and ZO-1 in DSS-induced colitis. Appl Biochem
Biotechnol. 177:1716–1728. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yoon GA and Park S: Antioxidant action of
soy isoflavones on oxidative stress and antioxidant enzyme
activities in exercised rats. Nutr Res Pract. 8:618–624. 2014.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Yin J, Liu M, Ren W, Duan J, Yang G, Zhao
Y, Fang R, Chen L, Li T and Yin Y: Effects of dietary
supplementation with glutamate and aspartate on diquat-induced
oxidative stress in piglets. PLoS One. 10:e01228932015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yin J, Duan J, Cui Z, Ren W, Li T and Yin
Y: Hydrogen peroxide-induced oxidative stress activates NF-κB and
Nrf2/Keap1 signals and triggers autophagy in piglets. RSC Advances.
5:15479–15486. 2015. View Article : Google Scholar
|
17
|
Yin J, Wu MM, Xiao H, Ren WK, Duan JL,
Yang G, Li TJ and Yin YL: Development of an antioxidant system
after early weaning in piglets. J Anim Sci. 92:612–619. 2014.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Doz E, Noulin N, Boichot E, Guénon I, Fick
L, Le Bert M, Lagente V, Ryffel B, Schnyder B, Quesniaux VF and
Couillin I: Cigarette smoke-induced pulmonary inflammation is
TLR4/MyD88 and IL-1R1/MyD88 signaling dependent. J Immunol.
180:1169–1178. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Pudenz M, Roth K and Gerhauser C: Impact
of soy isoflavones on the epigenome in cancer prevention.
Nutrients. 6:4218–4272. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hillman GG and Singh-Gupta V: Soy
isoflavones sensitize cancer cells to radiotherapy. Free Radic Biol
Med. 51:289–298. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kim JJ, Shajib MS, Manocha MM and Khan WI:
Investigating intestinal inflammation in DSS-induced model of IBD.
J Vis Exp pii. 36782012.
|
23
|
Khan AQ, Khan R, Rehman MU, Lateef A,
Tahir M, Ali F and Sultana S: Soy isoflavones (daidzein &
genistein) inhibit 12-O-tetradecanoylphorbol-13-acetate
(TPA)-induced cutaneous inflammation via modulation of COX-2 and
NF-κB in Swiss albino mice. Toxicology. 302:266–274. 2012.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Arteel GE, Uesugi T, Bevan LN, Gäbele E,
Wheeler MD, McKim SE and Thurman RG: Green tea extract protects
against early alcohol-induced liver injury in rats. Biol Chem.
383:663–670. 2002. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yousef MI, Kamel KI, Esmail AM and
Baghdadi HH: Antioxidant activities and lipid lowering effects of
isoflavone in male rabbits. Food Chem Toxicol. 42:1497–1503. 2004.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Yin J, Ren W, Yang G, Duan J, Huang X,
Fang R, Li C, Li T, Yin Y, Hou Y, et al: l-Cysteine metabolism and
its nutritional implications. Mol Nutr Food Res. 60:134–146. 2016.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Yin J, Ren W, Liu G, Duan J, Yang G, Wu L,
Li T and Yin Y: Birth oxidative stress and the development of an
antioxidant system in newborn piglets. Free Radic Res.
47:1027–1035. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Häuser F, Rossmann H, Laubert-Reh D, Wild
PS, Zeller T, Müller C, Neuwirth S, Blankenberg S and Lackner KJ:
Inflammatory bowel disease (IBD) locus 12: Is glutathione
peroxidase-1 (GPX1) the relevant gene? Genes Immun. 16:571–575.
2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kim HR, Lee A, Choi EJ, Kie JH, Lim W, Lee
HK, Moon BI and Seoh JY: Attenuation of experimental colitis in
glutathione peroxidase 1 and catalase double knockout mice through
enhancing regulatory T cell function. PLoS One. 9:e953322014.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Amasheh M, Grotjohann I, Amasheh S, Fromm
A, Söderholm JD, Zeitz M, Fromm M and Schulzke JD: Regulation of
mucosal structure and barrier function in rat colon exposed to
tumor necrosis factor alpha and interferon gamma in vitro: A novel
model for studying the pathomechanisms of inflammatory bowel
disease cytokines. Scand J Gastroenterol. 44:1226–1235. 2009.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Kiatprasert P, Deachapunya C, Benjanirat C
and Poonyachoti S: Soy isoflavones improves endometrial barrier
through tight junction gene expression. Reproduction. 149:269–280.
2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ma W, Wang J, Li Y, Hu X, Shi F and Wang
X: Enhancing pentose phosphate pathway in Corynebacterium
glutamicum to improve l-isoleucine production. Biotechnol Appl
Biochem. 63:877–885. 2016. View
Article : Google Scholar : PubMed/NCBI
|
33
|
Cao AT, Yao S, Stefka AT, Liu Z, Qin H,
Liu H, Evans-Marin HL, Elson CO, Nagler CR and Cong Y: TLR4
regulates IFN-γ and IL-17 production by both thymic and induced
Foxp3+ Tregs during intestinal inflammation. J Leukoc Biol.
96:895–905. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wang W, Xia T and Yu X: Wogonin suppresses
inflammatory response and maintains intestinal barrier function via
TLR4-MyD88-TAK1-mediated NF-κB pathway in vitro. Inflamm Res.
64:423–431. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Dijsselbloem N, Goriely S, Albarani V,
Gerlo S, Francoz S, Marine JC, Goldman M, Haegeman G and Berghe W
Vanden: A critical role for p53 in the control of
NF-kappaB-dependent gene expression in TLR4-stimulated dendritic
cells exposed to Genistein. J Immunol. 178:5048–5057. 2007.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Yu HL, Li XY, Zhou X, Yuan LH, Ma WW, Xi
YD, Zhao X, Wu J and Xiao R: Beta amyloid peptide (25–35) leading
to inflammation through Toll-like receptors and the
anti-inflammatory effect of genistein in BV-2 cells. J Mol
Neurosci. 51:771–778. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Jeong JW, Lee HH, Han MH, Kim GY, Kim WJ
and Choi YH: Anti-inflammatory effects of genistein via suppression
of the toll-like receptor 4-mediated signaling pathway in
lipopolysaccharide-stimulated BV2 microglia. Chem Biol Interact.
212:30–39. 2014. View Article : Google Scholar : PubMed/NCBI
|