1
|
Nagy Z, Takacs A, Filkorn T and Sarayba M:
Initial clinical evaluation of an intraocular femtosecond laser in
cataract surgery. J Refract Surg. 25:1053–1060. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Masket S, Sarayba M, Ignacio T and Fram N:
Femtosecond laser-assisted cataract incisions: architectural
stability and reproducibility. J Cataract Refract Surg.
36:1048–1049. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hon Y and Lam AK: Corneal deformation
measurement using Scheimpflug noncontact tonometry. Optom Vis Sci.
90:e1–e8. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hayes S, Boote C, Lewis J, Sheppard J,
Abahussin M, Quantock AJ, Purslow C, Votruba M and Meek KM:
Comparative study of fibrillar collagen arrangement in the corneas
of primates and other mammals. Anat Rec (Hoboken). 290:1542–1550.
2007. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Boote C, Hayes S, Abahussin M and Meek KM:
Mapping collagen organization in the human cornea: left and right
eyes are structurally distinct. Invest Ophthalmol Vis Sci.
47:901–908. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Meek KM and Boote C: The organization of
collagen in the corneal stroma. Exp Eye Res. 78:503–512. 2004.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Aghamohammadzadeh H, Newton RH and Meek
KM: X-ray scattering used to map the preferred collagen orientation
in the human cornea and limbus. Structure. 12:249–256. 2004.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Brown NA and Sparrow JM: Control of
astigmatism in cataract surgery. Br J Ophthalmol. 72:487–493. 1988.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Song X, Langenbucher A, Gatzioufas Z,
Seitz B and El-Husseiny M: Effect of biometric characteristics on
the change of biomechanical properties of the human cornea due to
cataract surgery. BioMed Res Int. 2014:6280192014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Spörl E, Terai N, Haustein M, Böhm AG,
Raiskup-Wolf F and Pillunat LE: Biomechanical condition of the
cornea as a new indicator for pathological and structural changes.
Ophthalmologe. 106:512–520. 2009.(In German). View Article : Google Scholar : PubMed/NCBI
|
11
|
Wilson SE and Klyce SD: Quantitative
descriptors of corneal topography. A clinical study. Arch
Ophthalmol. 109:349–353. 1991. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hager A, Loge K, Schroeder B, Füllhas MO
and Wiegand W: Effect of central corneal thickness and corneal
hysteresis on tonometry as measured by dynamic contour tonometry,
ocular response analyzer, and Goldmann tonometry in glaucomatous
eyes. J Glaucoma. 17:361–365. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kamiya K, Shimizu K, Ohmoto F and Amano R:
Time course of corneal biomechanical parameters after
phacoemulsification with intraocular lens implantation. Cornea.
29:1256–1260. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Alió JL, Agdeppa MC, Rodríguez-Prats JL,
Amparo F and Piñero DP: Factors influencing corneal biomechanical
changes after microincision cataract surgery and standard coaxial
phacoemulsification. J Cataract Refract Surg. 36:890–897. 2010.
View Article : Google Scholar : PubMed/NCBI
|
15
|
McMonnies CW: Assessing corneal hysteresis
using the Ocular Response Analyzer. Optom Vis Sci. 89:E343–E349.
2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Detry-Morel M, Jamart J and Pourjavan S:
Evaluation of corneal biomechanical properties with the Reichert
Ocular Response Analyzer. Eur J Ophthalmol. 21:138–148. 2011.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Terai N, Raiskup F, Haustein M, Pillunat
LE and Spoerl E: Identification of biomechanical properties of the
cornea: the ocular response analyzer. Curr Eye Res. 37:553–562.
2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Valbon BF, Ambrósio R Jr, Fontes BM and
Alves MR: Effects of age on corneal deformation by non-contact
tonometry integrated with an ultra-high-speed (UHS) Scheimpflug
camera. Arq Bras Oftalmol. 76:229–232. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Valbon BF, Ambrósio R Jr, Fontes BM, Luz
A, Roberts CJ and Alves MR: Ocular biomechanical metrics by CorVis
ST in healthy Brazilian patients. J Refract Surg. 30:468–473. 2014.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Nemeth G, Hassan Z, Csutak A, Szalai E,
Berta A and Modis L Jr: Repeatability of ocular biomechanical data
measurements with a Scheimpflug-based noncontact device on normal
corneas. J Refract Surg. 29:558–563. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hamilton DR, Johnson RD, Lee N and Bourla
N: Differences in the corneal biomechanical effects of surface
ablation compared with laser in situ keratomileusis using a
microkeratome or femtosecond laser. J Cataract Refract Surg.
34:2049–2056. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Krueger RR and Dupps WJ Jr: Biomechanical
effects of femtosecond and microkeratome-based flap creation:
prospective contralateral examination of two patients. J Refract
Surg. 23:800–807. 2007.PubMed/NCBI
|
23
|
Gimbel HV, Iskander NG, Peters NT and
Penno EA: Prevention and management of microkeratome-related laser
in situ keratomileusis complications. J Refract Surg. 16
Suppl:226–229. 2000.
|
24
|
Talamo JH, Meltzer J and Gardner J:
Reproducibility of flap thickness with IntraLase FS and Moria LSK-1
and M2 microkeratomes. J Refract Surg. 22:556–561. 2006.PubMed/NCBI
|
25
|
Kim JY, Kim MJ, Kim TI, Choi HJ, Pak JH
and Tchah H: A femtosecond laser creates a stronger flap than a
mechanical microkeratome. Invest Ophthalmol Vis Sci. 47:599–604.
2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sonigo B, Iordanidou V, Chong-Sit D,
Auclin F, Ancel JM, Labbé A and Baudouin C: In vivo corneal
confocal microscopy comparison of intralase femtosecond laser and
mechanical microkeratome for laser in situ keratomileusis. Invest
Ophthalmol Vis Sci. 47:2803–2811. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Schmack I, Dawson DG, McCarey BE, Waring
GO III, Grossniklaus HE and Edelhauser HF: Cohesive tensile
strength of human LASIK wounds with histologic, ultrastructural,
and clinical correlations. J Refract Surg. 21:433–445.
2005.PubMed/NCBI
|
28
|
Kucumen RB, Yenerel NM, Gorgun E,
Kulacoglu DN, Oncel B, Kohen MC and Alimgil ML: Corneal
biomechanical properties and intraocular pressure changes after
phacoemulsification and intraocular lens implantation. J Cataract
Refract Surg. 34:2096–2098. 2008. View Article : Google Scholar : PubMed/NCBI
|