1
|
Dolecek TA, Propp JM, Stroup NE and
Kruchko C: CBTRUS statistical report: Primary brain and central
nervous system tumors diagnosed in the United States in 2005–2009.
Neuro Oncol. 14 Suppl 5:v1–v49. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Mihailović G, Marković M, Zivković N,
Mihailović G, Marković M, Berisavac I and Spaić M: Epidemiological
features of brain tumors. Srp Arh Celok Lek. 141:823–829. 2013.(In
Serbian). View Article : Google Scholar : PubMed/NCBI
|
3
|
Stupp R, Mason WP, Van den Bent MJ, Weller
M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn
U, et al: Radiotherapy plus concomitant and adjuvant temozolomide
for glioblastoma. New Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang Y and Jiang T: Understanding high
grade glioma: Molecular mechanism, therapy and comprehensive
management. Cancer Lett. 331:139–146. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Carlsson SK, Brothers SP and Wahlestedt C:
Emerging treatment strategies for glioblastoma multiforme. EMBO Mol
Med. 6:1359–1370. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Omuro A and DeAngelis LM: Glioblastoma and
other malignant gliomasa: Clinical review. JAMA. 310:1842–1850.
2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Van Meir EG, Hadjipanayis CG, Norden AD,
Shu HK, Wen PY and Olson JJ: Exciting new advances in
neuro-oncology: The avenue to a cure for malignant glioma. CA
Cancer J Clin. 60:166–193. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ohgaki H, Dessen P, Jourde B, Horstmann S,
Nishikawa T, Di Patre PL, Burkhard C, Schüler D, Probst-Hensch NM,
Maiorka PC, et al: Genetic pathways to glioblastoma: A
population-based study. Cancer Res. 64:6892–6899. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Atkins RJ, Ng W, Stylli SS, Hovens CM and
Kaye AH: Repair mechanisms help glioblastoma resist treatment. J
Clin Neurosci. 22:14–20. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Calin GA, Sevignani C, Dumitru CD, Hyslop
T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M
and Croce CM: Human microRNA genes are frequently located at
fragile sites and genomic regions involved in cancers. Proc Natl
Acad Sci USA. 101:pp. 2999–3004. 2004; View Article : Google Scholar : PubMed/NCBI
|
13
|
Sevignani C, Calin GA, Nnadi SC, Shimizu
M, Davuluri RV, Hyslop T, Demant P, Croce CM and Siracusa LD:
MicroRNA genes are frequently located near mouse cancer
susceptibility loci. Proc Natl Acad Sci USA. 104:pp. 8017–8022.
2007; View Article : Google Scholar : PubMed/NCBI
|
14
|
Miranda PJ, Vimalraj S and Selvamurugan N:
A feedback expression of microRNA-590 and activating transcription
factor-3 in human breastcancer cells. Int J Biol Macromol.
72:145–150. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chu Y, Ouyang Y, Wang F, Zheng A, Bai L,
Han L, Chen Y and Wang H: MicroRNA-590 promotes cervical cancer
cell growth and invasion by targeting CHL1. J Cell Biochem.
115:847–853. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xiao X, Tang C, Xiao S, Fu C and Yu P:
Enhancement of proliferation and invasion by MicroRNA-590-5p via
targeting PBRM1 in clear cell renal carcinoma cells. Oncol Res.
20:537–544. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yang H, Zheng W, Zhao W, Guan C and An J:
Roles of miR-590-5p and miR-590-3p in the development of
hepatocellular carcinoma. Nan Fang Yi Ke Da Xue Xue Bao.
33:804–811. 2013.(In Chinese). PubMed/NCBI
|
18
|
Yokdang N, Hatakeyama J, Wald JH, Simion
C, Tellez JD, Chang DZ, Swamynathan MM, Chen M, Murphy WJ, Iii KL
Carraway and Sweeney C: LRIG1 opposes epithelial-to- mesenchymal
transition and inhibits invasion of basal-like breast cancer cells.
Oncogene. 35:2932–2947. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kou C, Zhou T, Han X, Zhuang H and Qian H:
LRIG1, a 3p tumor suppressor, represses EGFR signaling and is a
novel epigenetic silenced gene in colorectal cancer. Biochem
Biophys Res Commun. 464:519–525. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sheu JJ, Lee CC, Hua CH, Li CI, Lai MT,
Lee SC, Cheng J, Chen CM, Chan C, Chao SC, et al: LRIG1 modulates
aggressiveness of head and neck cancers by regulating
EGFR-MAPK-SPHK1 signaling and extracellular matrix remodeling.
Oncogene. 33:1375–1384. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ye F, Gao Q, Xu T, Zeng L, Ou Y, Mao F,
Wang H, He Y, Wang B, Yang Z, et al: Upregulation of LRIG1
suppresses malignant glioma cell growth by attenuating EGFR
activity. J Neurooncol. 94:183–194. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yang JA, Liu BH, Shao LM, Guo ZT, Yang Q,
Wu LQ, Ji BW, Zhu XN, Zhang SQ, Li CJ and Chen QX: LRIG1 enhances
the radiosensitivity of radioresistant human glioblastoma U251
cells via attenuation of the EGFR/Akt signaling pathway. Int J Clin
Exp Pathol. 8:3580–3590. 2015.PubMed/NCBI
|
23
|
Louis DN, Ohgaki H, Wiestler OD, Cavenee
WK, Burger PC, Jouvet A, Scheithauer BW and Kleihues P: The 2007
WHO classification of tumours of the central nervous system. Acta
Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-tie quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
One in three newly diagnosed cancer
patients now receives radiation therapy. Oncology (Williston Park).
10:17761996.PubMed/NCBI
|
26
|
Chen G, Zhu W, Shi D, Lv L, Zhang C, Liu P
and Hu W: MicroRNA-181a sensitizes human malignant glioma U87MG
cells to radiation by targeting Bcl-2. Oncol Rep. 23:997–1003.
2010.PubMed/NCBI
|
27
|
Deng X, Ma L, Wu M, Zhang G, Jin C, Guo Y
and Liu R: miR-124 radiosensitizes human glioma cells by targeting
CDK4. J Neurooncol. 114:263–274. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Guo P, Lan J, Ge J, Nie Q, Guo L, Qiu Y
and Mao Q: MiR-26a enhances the radiosensitivity of glioblastoma
multiforme cells through targeting of ataxia-telangiectasia
mutated. Exp Cell Res. 320:200–208. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Li W, Guo F, Wang P, Hong S and Zhang C:
miR-221/222 confers radioresistance in glioblastoma cells through
activating Akt independent of PTEN status. Curr Mol Med.
14:185–195. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Upraity S, Kazi S, Padul V and Shirsat NV:
MiR-224 expression increases radiation sensitivity of glioblastoma
cells. Biochem Biophys Res Commun. 448:225–230. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Thomasson M, Hedman H, Guo D, Ljungberg B
and Henriksson R: LRIG1 and epidermal growth factor receptor in
renal cell carcinoma: A quantitative RT-PCR and immunohistochemical
analysis. Brit J Cancer. 89:1285–1289. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Nagata M, Nakamura T, Sotozono C, Inatomi
T, Yokoi N and Kinoshita S: LRIG1 as a potential novel marker for
neoplastic transformation in ocular surface squamous neoplasia.
PLoS One. 9:e931642014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Guo D, Nilsson J, Haapasalo H, Raheem O,
Bergenheim T, Hedman H and Henriksson R: Perinuclear leucine-rich
repeats and immunoglobulin-like domain proteins (LRIG1-3) as
prognostic indicators in astrocytic tumors. Acta Neuropathol.
111:238–246. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Johansson M, Oudin A, Tiemann K, Bernard
A, Golebiewska A, Keunen O, Fack F, Stieber D, Wang B, Hedman H and
Niclou SP: The soluble form of the tumor suppressor Lrig1 potently
inhibits in vivo glioma growth irrespective of EGF receptor status.
Neuro Oncol. 15:1200–1211. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Mao F, Wang B, Xiao Q, Xi G, Sun W, Zhang
H, Ye F, Wan F, Guo D, Lei T and Chen X: A role for LRIG1 in the
regulation of malignant glioma aggressiveness. Int J Oncol.
42:1081–1087. 2013.PubMed/NCBI
|
36
|
Ye F, Guo DS, Niu HQ, Tao SZ, Ou YB, Lu YP
and Lei T: Molecular mechanism of LRIG1 cDNA-induced apoptosis in
human glioma cell line H4. Ai Zheng. 23:1149–1154. 2004.(In
Chinese). PubMed/NCBI
|
37
|
Xie R, Yang H, Xiao Q, Mao F, Zhang S, Ye
F, Wan F, Wang B, Lei T and Guo D: Downregulation of LRIG1
expression by RNA interference promotes the aggressive properties
ofglioma cells via EGFR/Akt/c-Myc activation. Oncol Rep.
29:177–184. 2013.PubMed/NCBI
|
38
|
Mao F, Wang B, Xi G, Sun W, Zhang H, Ye F,
Guo D and Lei T: Effects of RNAi-mediated gene silencing of LRIG1
on proliferation and invasion of glioma cells. J Huazhong Univ Sci
Technolog Med Sci. 32:227–232. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wu X, Hedman H, Bergqvist M, Bergström S,
Henriksson R, Gullbo J, Lennartsson J, Hesselius P and Ekman S:
Expression of EGFR and LRIG proteins in oesophageal carcinoma with
emphasis on patient survival and cellular chemosensitivity. Acta
Oncol. 51:69–76. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Sheu JJ, Lee CC, Hua CH, Li CI, Lai MT,
Lee SC, Cheng J, Chen CM, Chan C, Chao SC, et al: LRIG1 modulates
aggressiveness of head and neck cancers by regulating
EGFR-MAPK-SPHK1 signaling and extracellular matrix remodeling.
Oncogene. 33:1375–1384. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Guo Z, Chen Q, Liu B, Tian D, Zhang S and
Li M: LRIG1 enhances chemosensitivity by modulating BCL-2
expression and receptor tyrosine kinase signaling in glioma cells.
Yonsei Med J. 55:1196–1205. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Qi XC, Xie DJ, Yan QF, Wang YR, Zhu YX,
Qian C and Yang SX: LRIG1 dictates the chemo-sensitivity of
temozolomide (TMZ) in U251 glioblastoma cells via down-regulation
of EGFR/topoisomerase-2/Bcl-2. Biochem Biophys Res Commun.
437:565–572. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Wang X, Xiao Q, Xing X, Tian C, Zhang H,
Ye F, Wan F, Wang B, Guo D and Lei T: LRIG1 enhances cisplatin
sensitivity of glioma cell lines. Oncol Res. 20:205–211. 2012.
View Article : Google Scholar : PubMed/NCBI
|