1
|
Bourguignon LY, Zhu H, Shao L and Chen YW:
Ankyrin-Tiam1 interaction promotes Rac1 signaling and metastatic
breast tumor cell invasion and migration. J Cell Biol. 150:177–191.
2000. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ceccarelli DF, Blasutig IM, Goudreault M,
Li Z, Ruston J, Pawson T and Sicheri F: Non-canonical interaction
of phosphoinositides with pleckstrin homology domains of Tiam1 and
ArhGAP9. J Biol Chem. 282:13864–13874. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Leeuwen FN, Kain HE, Kammen RA, Michiels
F, Kranenburg OW and Collard JG: The guanine nucleotide exchange
factor Tiam1 affects neuronal morphology; opposing roles for the
small GTPases Rac and Rho. J Cell Biol. 139:797–807. 1997.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Paliwal S, Ho N, Parker D and Grossman SR:
CtBP2 promotes human cancer cell migration by transcriptional
activation of tiam1. Genes Cancer. 3:481–490. 2012.PubMed/NCBI
|
5
|
Wang HM and Wang J: Expression of Tiam1 in
lung cancer and its clinical significance. Asian Pac J Cancer Prev.
13:613–615. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Vaughan L, Tan CT, Chapman A, Nonaka D,
Mack NA, Smith D, Booton R, Hurlstone AF and Malliri A: HUWE1
ubiquitylates and degrades the RAC activator TIAM1 promoting
cell-cell adhesion disassembly, migration, and invasion. Cell Rep.
10:88–102. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Minard ME, Herynk MH, Collard JG and
Gallick GE: The guanine nucleotide exchange factor Tiam1 increases
colon carcinoma growth at metastatic sites in an orthotopic nude
mouse model. Oncogene. 24:2568–2573. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Mertens AE, Pegtel DM and Collard JG:
Tiam1 takes PARt in cell polarity. Trends Cell Biol. 16:308–316.
2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Desai LP, Chapman KE and Waters CM:
Mechanical stretch decreases migration of alveolar epithelial cells
through mechanisms involving Rac1 and Tiam1. Am J Physiol Lung Cell
Mol Physiol. 295:L958–L965. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
The Lancet Respiratory Medicine: The
changing landscape of idiopathic pulmonary fibrosis. Lancet Respir
Med. 2:5072014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wynn TA: Cellular and molecular mechanisms
of fibrosis. J Pathol. 214:199–210. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Huang LS and Natarajan V: Sphingolipids in
pulmonary fibrosis. Adv Biol Regul. 57:55–63. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wynn TA: Integrating mechanisms of
pulmonary fibrosis. J Exp Med. 208:1339–1350. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Leask A and Abraham DJ: TGF-beta signaling
and the fibrotic response. FASEB J. 18:816–827. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Sime PJ, Xing Z, Graham FL, Csaky KG and
Gauldie J: Adenovector-mediated gene transfer of active
transforming growth factor-beta1 induces prolonged severe fibrosis
in rat lung. J Clin Invest. 100:768–776. 1997. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xu P, Liu J and Derynck R:
Post-translational regulation of TGF-β receptor and Smad signaling.
FEBS Lett. 586:1871–1884. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Song N, Liu J, Shaheen S, Du L, Proctor M,
Roman J and Yu J: Vagotomy attenuates bleomycin-induced pulmonary
fibrosis in mice. Sci Rep. 5:134192015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Choi SH, Kim M, Lee HJ, Kim EH, Kim CH and
Lee YJ: Effects of NOX1 on fibroblastic changes of endothelial
cells in radiation-induced pulmonary fibrosis. Mol Med Rep.
13:4135–4142. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Minard ME, Kim LS, Price JE and Gallick
GE: The role of the guanine nucleotide exchange factor Tiam1 in
cellular migration, invasion, adhesion and tumor progression.
Breast Cancer Res Treat. 84:21–32. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu S, Li Y, Qi W, Zhao Y, Huang A, Sheng
W, Lei B, Lin P, Zhu H, Li W and Shen H: Expression of Tiam1
predicts lymph node metastasis and poor survival of lung
adenocarcinoma patients. Diagn Pathol. 9:692014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Du X, Wang S, Lu J, Wang Q, Song N, Yang
T, Dong R, Zang L, Yang Y, Wu T and Wang C: Clinical value of
Tiam1-Rac1 signaling in primary gallbladder carcinoma. Med Oncol.
29:1873–1878. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Engers R, Mueller M, Walter A, Collard JG,
Willers R and Gabbert HE: Prognostic relevance of Tiam1 protein
expression in prostate carcinomas. Br J Cancer. 95:1081–1086. 2006.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Huang J, Ye X, Guan J, Chen B, Li Q, Zheng
X, Liu L, Wang S, Ding Y, Ding Y and Chen L: Tiam1 is associated
with hepatocellular carcinoma metastasis. Int J Cancer. 132:90–100.
2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ding Y, Chen B, Wang S, Zhao L, Chen J,
Ding Y, Chen L and Luo R: Overexpression of Tiam1 in hepatocellular
carcinomas predicts poor prognosis of HCC patients. Int J Cancer.
124:653–658. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Liu L, Wu DH and Ding YQ: Tiam1 gene
expression and its significance in colorectal carcinoma. World J
Gastroenterol. 11:705–707. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Nho RS and Polunovsky V: Translational
control of the fibroblast-extracellular matrix association: An
application to pulmonary fibrosis. Translation (Austin).
1:e239342013.PubMed/NCBI
|
28
|
Darby IA, Laverdet B, Bonté F and
Desmoulieré A: Fibroblasts and myofibroblasts in wound healing.
Clin Cosmet Investig Dermatol. 7:301–311. 2014.PubMed/NCBI
|
29
|
Gohda E, Matsunaga T, Kataoka H, Takebe T
and Yamamoto I: Induction of hepatocyte growth factor in human skin
fibroblasts by epidermal growth factor, platelet-derived growth
factor and fibroblast growth factor. Cytokine. 6:633–640. 1994.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Strutz F, Zeisberg M, Renziehausen A,
Raschke B, Becker V, van Kooten C and Müller G: TGF-beta 1 induces
proliferation in human renal fibroblasts via induction of basic
fibroblast growth factor (FGF-2). Kidney Int. 59:579–592. 2001.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Andre F and Cortés J: Rationale for
targeting fibroblast growth factor receptor signaling in breast
cancer. Breast Cancer Res Treat. 150:1–8. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Song T, Dou C, Jia Y, Tu K and Zheng X:
TIMP-1 activated carcinoma-associated fibroblasts inhibit tumor
apoptosis by activating SDF1/CXCR4 signaling in hepatocellular
carcinoma. Oncotarget. 6:12061–12079. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Mizuno K, Mataki H, Seki N, Kumamoto T,
Kamikawaji K and Inoue H: MicroRNAs in non-small cell lung cancer
and idiopathic pulmonary fibrosis. J Hum Genet. 62:57–65. 2017.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Stella GM, Inghilleri S, Pignochino Y,
Zorzetto M, Oggionni T, Morbini P and Luisetti M: Activation of
oncogenic pathways in idiopathic pulmonary fibrosis. Transl Oncol.
7:650–655. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Archontogeorgis K, Steiropoulos P,
Tzouvelekis A, Nena E and Bouros D: Lung cancer and interstitial
lung diseases: A systematic review. Pulm Med. 2012:3159182012.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Li Y, Jiang D, Liang J, Meltzer EB, Gray
A, Miura R, Wogensen L, Yamaguchi Y and Noble PW: Severe lung
fibrosis requires an invasive fibroblast phenotype regulated by
hyaluronan and CD44. J Exp Med. 208:1459–1471. 2011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Parnaud G, Hammar E, Ribaux P, Donath MY,
Berney T and Halban PA: Signaling pathways implicated in the
stimulation of beta-cell proliferation by extracellular matrix. Mol
Endocrinol. 23:1264–1271. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hammar EB, Irminger JC, Rickenbach K,
Parnaud G, Ribaux P, Bosco D, Rouiller DG and Halban PA: Activation
of NF-kappaB by extracellular matrix is involved in spreading and
glucose-stimulated insulin secretion of pancreatic beta cells. J
Biol Chem. 280:30630–30637. 2005. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sun X, Chen E, Dong R, Chen W and Hu Y:
Nuclear factor (NF)-κB p65 regulates differentiation of human and
mouse lung fibroblasts mediated by TGF-β. Life Sci. 122:8–14. 2015.
View Article : Google Scholar : PubMed/NCBI
|