1
|
Zadrazil J and Horak P: Pathophysiology of
anemia in chronic kidney diseases: A review. Biomed Pap Med Fac
Univ Palacky Olomouc Czech Repub. 159:197–202. 2015.PubMed/NCBI
|
2
|
Collister D, Ferguson T, Komenda P and
Tangri N: The patterns, risk factors and prediction of progression
in chronic kidney disease: A narrative review. Semin Nephrol.
36:273–282. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Singh AK, Szczech L, Tang KL, Barnhart H,
Sapp S, Wolfson M and Reddan D: CHOIR Investigators: Correction of
anemia with epoetin alfa in chronic kidney disease. N Engl J Med.
355:2085–2098. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Drüeke TB, Locatelli F, Clyne N, Eckardt
KU, Macdougall IC, Tsakiris D, Burger HU and Scherhag A: CREATE
Investigators: Normalization of hemoglobin level in patients with
chronic kidney disease and anemia. N Engl J Med. 355:2071–2084.
2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Pfeffer MA, Burdmann EA, Chen CY, Cooper
ME, de Zeeuw D, Eckardt KU, Feyzi JM, Ivanovich P, Kewalramani R,
Levey AS, et al: A trial of darbepoetin alfa in type 2 diabetes and
chronic kidney disease. N Engl J Med. 361:2019–2032. 2009.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Akasaka-Manya K, Manya H and Endo T:
Function and change with aging of alpha-klotho in the kidney. Vitam
and horm. 101:239–256. 2016. View Article : Google Scholar
|
7
|
Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi
H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, et
al: Mutation of the mouse klotho gene leads to a syndrome
resembling ageing. Nature. 390:45–51. 1997. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kurosu H and Kuro OM: The Klotho gene
family as a regulator of endocrine fibroblast growth factors. Mol
Cell Endocrinol. 299:72–78. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ide N, Olauson H, Sato T, Densmore MJ,
Wang H, Hanai JI, Larsson TE and Lanske B: In vivo evidence for a
limited role of proximal tubular klotho in renal phosphate
handling. Kidney Int. 99:348–362:. 2016. View Article : Google Scholar
|
10
|
Hu MC, Shi M, Zhang J, Addo T, Cho HJ,
Barker SL, Ravikumar P, Gillings N, Bian A, Sidhu SS, et al: Renal
production, uptake and handling of circulating αKlotho. J Am Soc
Nephrol. 27:79–90. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhou L, Mo H, Miao J, Zhou D, Tan RJ, Hou
FF and Liu Y: Klotho ameliorates kidney injury and fibrosis and
normalizes blood pressure by targeting the renin-angiotensin
system. Am J Pathol. 185:3211–3223. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kadoya H, Satoh M, Haruna Y, Sasaki T and
Kashihara N: Klotho attenuates renal hypertrophy and glomerular
injury in Ins2Akita diabetic mice. Clin Exp Nephrol. 20:671–678.
2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Xie J, Yoon J, An SW, Kuro-o M and Huang
CL: Soluble klotho protects against uremic cardiomyopathy
independently of fibroblast growth factor 23 and phosphate. J Am
Soc Nephrol. 26:1150–1160. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Milovanov YS, Mukhin NA, Kozlovskaya LV,
Milovanova SY and Markina MM: Impact of anemia correction on the
production of the circulating morphogenetic protein alpha-Klotho in
patients with stages 3B-4 chronic kidney disease: A new direction
of cardionephroprotection. Ter Arkh. 88:21–25. 2016.(In Russian;
Abstract available in Russian from the publisher). View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang Y and Sun Z: Current understanding of
klotho. Ageing Res Rev. 8:43–51. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xu Y and Sun Z: Molecular basis of Klotho:
from gene to function in aging. Endocr Rev. 36:174–193. 2015.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Chen CD, Podvin S, Gillespie E, Leeman SE
and Abraham CR: Insulin stimulates the cleavage and release of the
extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad
Sci USA. 104:pp. 19796–19801. 2007, View Article : Google Scholar : PubMed/NCBI
|
18
|
Olauson H, Lindberg K, Amin R, Jia T,
Wernerson A, Andersson G and Larsson TE: Targeted deletion of
Klotho in kidney distal tubule disrupts mineral metabolism. J Am
Soc Nephrol. 23:1641–1651. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Martin A, David V and Quarles LD:
Regulation and function of the FGF23/klotho endocrine pathways.
Physiol Rev. 92:131–155. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liu Y and Zhang Q: Periodontitis
aggravated pancreatic beta-cell dysfunction in diabetic mice
through interleukin-12 regulation on Klotho. J Diabetes Investig.
7:303–311. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chen J, Lin Y and Sun Z: Deficiency in the
anti-aging gene Klotho promotes aortic valve fibrosis through
AMPKα-mediated activation of RUNX2. Aging cell. 15:853–860:. 2016.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Madathil Vadakke S, Coe LM, Casu C and
Sitara D: Klotho deficiency disrupts hematopoietic stem cell
development and erythropoiesis. Am J Pathol. 184:827–841. 2014.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Solak Y, Cetiner M, Siriopol D, Tarim K,
Afsar B, Covic A and Kanbay M: Novel masters of erythropoiesis:
hypoxia inducible factors and recent advances in anemia of renal
disease. Blood purif. 42:160–167. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Buendia P, Carracedo J, Soriano S, Madueño
JA, Ortiz A, Martín-Malo A, Aljama P and Ramírez R: Klotho prevents
NFκB translocation and protects endothelial cell from
senescence induced by uremia. J Gerontol A Biol Sci Med Sci.
70:1198–1209. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kempe DS, Ackermann TF, Fischer SS, Koka
S, Boini KM, Mahmud H, Föller M, Rosenblatt KP, Kuro-O M and Lang
F: Accelerated suicidal erythrocyte death in Klotho-deficient mice.
Pflugers Arch. 458:503–512. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Pasricha SR, Drakesmith H, Black J,
Hipgrave D and Biggs BA: Control of iron deficiency anemia in low-
and middle-income countries. Blood. 121:2607–2617. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Stancu S, Stanciu A, Zugravu A, Bârsan L,
Dumitru D, Lipan M and Mircescu G: Bone marrow iron, iron indices
and the response to intravenous iron in patients with
non-dialysis-dependent CKD. Am J Kidney Dis. 55:639–647. 2010.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Barsan L, Stanciu A, Stancu S, Căpuşă C,
Brătescu L, Mandache E, Radu E and Mircescu G: Bone marrow iron
distribution, hepcidin and ferroportin expression in renal anemia.
Hematology. 20:543–552. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Milovanova L, Iu Milovanov S, Kozlovskaia
LV and Mukhin NA: Significance of the morphogenetic proteins FGF-23
and Klotho as predictors of prognosis of chronic kidney disease.
Ter Arkh. 86:36–44. 2014.(In Russian). PubMed/NCBI
|
30
|
Saito K, Ishizaka N, Mitani H, Ohno M and
Nagai R: Iron chelation and a free radical scavenger suppress
angiotensin II-induced downregulation of klotho, an anti-aging
gene, in rat. FEBS Lett. 551:58–62. 2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Taylor M, Qu A, Anderson ER, Matsubara T,
Martin A, Gonzalez FJ and Shah YM: Hypoxia-inducible factor-2α
mediates the adaptive increase of intestinal ferroportin during
iron deficiency in mice. Gastroenterology. 140:2044–2055. 2011.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Goncalves JG, de Braganca AC, Canale D,
Shimizu MH, Sanches TR, Moysés RM, Andrade L, Seguro AC and Volpini
RA: Vitamin D deficiency aggravates chronic kidney disease
progression after ischemic acute kidney injury. PLoS One.
9:e1072282014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Goldsmith DJ: Pro: Should we correct
vitamin D deficiency/insufficiency in chronic kidney disease
patients with inactive forms of vitamin D or just treat them with
active vitamin D forms? Nephrol Dial Transplant. 31:698–705. 2016.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Agarwal R and Georgianos PI: Con:
Nutritional vitamin D replacement in chronic kidney disease and
end-stage renal disease. Nephrol Dial Transplant. 31:706–713. 2016.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Monlezun DJ, Camargo CA Jr, Mullen JT and
Quraishi SA: Vitamin d status and the risk of anemia in
community-dwelling adults: Results from the national health and
nutrition examination survey 2001–2006. Medicine (Baltimore).
94:e17992015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Suh YJ, Lee JE, Lee DH, Yi HG, Lee MH, Kim
CS, Nah JW and Kim SK: Prevalence and relationships of iron
deficiency anemia with blood cadmium and vitamin D levels in Korean
women. J Korean Med Sci. 31:25–32. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Forster RE, Jurutka PW, Hsieh JC, Haussler
CA, Lowmiller CL, Kaneko I, Haussler MR and Whitfield Kerr G:
Vitamin D receptor controls expression of the anti-aging klotho
gene in mouse and human renal cells. Biochem Biophys Res Commun.
414:557–562. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lips P: Vitamin D physiology. Prog Biophys
Mol Biol. 92:4–8. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kuro-o M: Klotho, phosphate and FGF-23 in
ageing and disturbed mineral metabolism. Nat Rev Nephrol.
9:650–660. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Alesutan I, Feger M, Pakladok T, Mia S,
Ahmed MS, Voelkl J and Lang F: 25-Hydroxyvitamin D3
1-α-hydroxylase-dependent stimulation of renal klotho expression by
spironolactone. Kidney Blood Press Res. 37:475–487. 2013.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Takenaka T, Inoue T, Ohno Y, Miyazaki T,
Nishiyama A, Ishii N and Suzuki H: Calcitriol supplementation
improves endothelium-dependent vasodilation in rat hypertensive
renal injury. Kidney Blood Press Res. 39:17–27. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Leibrock CB, Voelkl J, Kuro-O M, Lang F
and Lang UE: 1,25(OH)2D3 dependent overt hyperactivity phenotype in
klotho-hypomorphic mice. Sci Rep. 6:248792016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ichii O, Nakamura T, Irie T, Kouguchi H,
Nakamura D, Nakamura S, Sato S, Yokoyama K, Horino T, Sunden Y, et
al: Female cotton rats (Sigmodon hispidus) develop chronic
anemia with renal inflammation and cystic changes. Histochem Cell
Biol. 146:351–362. 2016. View Article : Google Scholar : PubMed/NCBI
|
44
|
Chung ACK and Lan HY: Chemokines in renal
injury. J Am Soc Nephrol. 22:802–809. 2011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Mack M and Yanagita M: Origin of
myofibroblasts and cellular events triggering fibrosis. Kidney Int.
87:297–307. 2015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Wang CY and Babitt JL: Hepcidin regulation
in the anemia of inflammation. Curr Opin Hematol. 23:189–197. 2016.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Kurosu H, Yamamoto M, Clark JD, Pastor JV,
Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M,
Kawaguchi H, et al: Suppression of aging in mice by the hormone
Klotho. Science. 309:1829–1833. 2005. View Article : Google Scholar : PubMed/NCBI
|
48
|
Wada J and Makino H: Inflammation and the
pathogenesis of diabetic nephropathy. Clin Sci (Lond). 124:139–152.
2013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhao Y, Banerjee S, Dey N, LeJeune WS,
Sarkar PS, Brobey R, Rosenblatt KP, Tilton RG and Choudhary S:
Klotho depletion contributes to increased inflammation in kidney of
the db/db mouse model of diabetes via RelA (serine)536
phosphorylation. Diabetes. 60:1907–1916. 2011. View Article : Google Scholar : PubMed/NCBI
|
50
|
Wu C, Lv C, Chen F, Ma X, Shao Y and Wang
Q: The function of miR-199a-5p/Klotho regulating TLR4/NF-kappaB
p65/NGAL pathways in rat mesangial cells cultured with high glucose
and the mechanism. Mol Cell Endocrinol. 417:84–93. 2015. View Article : Google Scholar : PubMed/NCBI
|
51
|
Shao Y, Sha M, Chen L, Li D, Lu J and Xia
S: HMGB1/TLR4 signaling induces an inflammatory response following
high-pressure renal pelvic perfusion in a porcine model. Am J
Physiol Renal Physiol. 311:F915–F925. 2016. View Article : Google Scholar : PubMed/NCBI
|
52
|
Yang K, Nie L, Huang Y, Zhang J, Xiao T,
Guan X and Zhao J: Amelioration of uremic toxin indoxyl
sulfate-induced endothelial cell dysfunction by Klotho protein.
Toxicol Lett. 215:77–83. 2012. View Article : Google Scholar : PubMed/NCBI
|