1
|
Intengan HD and Schiffrin EL: Vascular
remodeling in hypertension: Roles of apoptosis, inflammation, and
fibrosis. Hypertension. 38:581–587. 2001. View Article : Google Scholar : PubMed/NCBI
|
2
|
García-Pagán JC, Gracia-Sancho J and Bosch
J: Functional aspects on the pathophysiology of portal hypertension
in cirrhosis. J Hepatol. 57:458–461. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kang SH, Kim MY and Baik SK: Novelties in
the pathophysiology and management of portal hypertension: New
treatments on the horizon. Hepatol Int. Jul 11–2017.(Epub ahead of
print). View Article : Google Scholar
|
4
|
Kapoor D and Sarin S: Pathophysiology of
portal hypertension. J Gastroenterol Hepatol. 17 Suppl:S482–S487.
2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
Halka AT, Turner NJ, Carter A, Ghosh J,
Murphy MO, Kirton JP, Kielty CM and Walker MG: The effects of
stretch on vascular smooth muscle cell phenotype in vitro.
Cardiovasc Pathol. 17:98–102. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kun L, Ying L, Lei W, Jianhua Z, Yongbo X,
Tao W, Jinyuan T and Haibo C: Dysregulated apoptosis of the venous
wall in chronic venous disease and portal hypertension. Phlebology.
31:729–736. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ma K, Wang H, Yu J, Wei M and Xiao Q: New
insights on the regulation of Ca2+ -activated chloride channel
TMEM16A. J Cell Physiol. 232:707–716. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Schroeder BC, Cheng T, Jan YN and Jan LY:
Expression cloning of TMEM16A as a calcium-activated chloride
channel subunit. Cell. 134:1019–1029. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Caputo A, Caci E, Ferrera L, Pedemonte N,
Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O and
Galietta LJ: TMEM16A, a membrane protein associated with
calcium-dependent chloride channel activity. Science. 322:590–594.
2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yang YD, Cho H, Koo JY, Tak MH, Cho Y,
Shim WS, Park SP, Lee J, Lee B, Kim BM, et al: TMEM16A confers
receptor-activated calcium-dependent chloride conductance. Nature.
455:1210–1215. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ruiz C, Martins JR, Rudin F, Schneider S,
Dietsche T, Fischer CA, Tornillo L, Terracciano LM, Schreiber R,
Bubendorf L and Kunzelmann K: Enhanced expression of ANO1 in head
and neck squamous cell carcinoma causes cell migration and
correlates with poor prognosis. Plos One. 7:e432652012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Oh U and Jung J: Cellular functions of
TMEM16/anoctamin. Pflugers Arch. 468:443–453. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Forrest AS, Joyce TC, Huebner ML, Ayon RJ,
Wiwchar M, Joyce J, Freitas N, Davis AJ, Ye L, Duan DD, et al:
Increased TMEM16A-encoded calcium-activated chloride channel
activity is associated with pulmonary hypertension. Am J Physiol
Cell Physiol. 303:C1229–C1243. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang B, Li C, Huai R and Qu Z:
Overexpression of ANO1/TMEM16A, an arterial Ca2+-activated
Cl-channel, contributes to spontaneous hypertension. J Mol Cell
Cardiol. 82:22–32. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Duvvuri U, Shiwarski DJ, Xiao D, Bertrand
C, Huang X, Edinger RS, Rock JR, Harfe BD, Henson BJ, Kunzelmann K,
et al: TMEM16A induces MAPK and contributes directly to
tumorigenesis and cancer progression. Cancer Res. 72:3270–4281.
2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Qu Z, Yao W, Yao R, Liu X, Yu K and
Hartzell C: The Ca(2+)-activated Cl(−) channel, ANO1 (TMEM16A), is
a double-edged sword in cell proliferation and tumorigenesis.
Cancer Med. 3:453–461. 2014. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Shiwarski DJ, Shao C, Bill A, Kim J, Xiao
D, Bertrand CA, Seethala RS, Sano D, Myers JN, Ha P, et al: To
‘grow’ or ‘go’: TMEM16A expression as a switch between tumor growth
and metastasis in SCCHN. Clin Cancer Res. 20:4673–4688. 2014.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Su EJ, Lombardi DM, Siegal J and Schwartz
SM: Angiotensin II induces vascular smooth muscle cell replication
independent of blood pressure. Hypertension. 31:1331–1337. 1998.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu D, Chen J, Wang J, Zhang Z, Ma X, Jia
J and Wang Y: Increased expression of urotensin II and GPR14 in
patients with cirrhosis and portal hypertension. Int J Mol Med.
25:845–851. 2010.PubMed/NCBI
|
20
|
Zimmermann M: Ethical considerations in
relation to pain in animal experimentation. Acta Physiol Scand
Suppl. 554:221–233. 1986.PubMed/NCBI
|
21
|
Xu C and Dong W: Role of hypoxia-inducible
factor-1α in pathogenesis and disease evaluation of ulcerative
colitis. Exp Ther Med. 11:1330–1334. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Leik CE, Willey A, Graham MF and Walsh SW:
Isolation and culture of arterial smooth muscle cells from human
placenta. Hypertension. 43:837–840. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Adhikari N, Shekar KC, Staggs R, Win Z,
Steucke K, Lin YW, Wei LN, Alford P and Hall JL; International
Society of Cardiovascular Translational Research, : Guidelines for
the isolation and characterization of murine vascular smooth muscle
cells. A report from the international society of cardiovascular
translational research. J Cardiovasc Transl Res. 8:158–163. 2015.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang L, Liu HJ, Li TJ, Yang Y, Guo XL, Wu
MC, Rui YC and Wei LX: Lentiviral vector-mediated siRNA knockdown
of SR-PSOX inhibits foam cell formation in vitro. Acta Pharmacol
Sin. 29:847–852. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Holt JR, Johns DC, Wang S, Chen ZY, Dunn
RJ, Marban E and Corey DP: Functional expression of exogenous
proteins in mammalian sensory hair cells infected with adenoviral
vectors. J Neurophysiol. 81:1881–1888. 1999.PubMed/NCBI
|
26
|
Tacev T, Zaloudik J, Janáková L and
Vagunda V: Early changes in flow cytometric DNA profiles induced by
californium-252 neutron brachytherapy in squamocellular carcinomas
of the uterine cervix. Neoplasma. 45:96–101. 1998.PubMed/NCBI
|
27
|
Jin C, Wang A, Chen J, Liu X and Wang G:
Relationship between expression and prognostic ability of PTEN,
STAT3 and VEGF-C in colorectal cancer. Exp Ther Med. 4:633–639.
2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Mazzone A, Eisenman ST, Strege PR, Yao Z,
Ordog T, Gibbons SJ and Farrugia G: Inhibition of cell
proliferation by a selective inhibitor of the Ca(2+)-activated
Cl(−) channel, Ano1. Biochem Biophys Res Commun. 427:248–253. 2012.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Hwang SJ, Blair PJ, Britton FC, O'Driscoll
KE, Hennig G, Bayguinov YR, Rock JR, Harfe BD, Sanders KM and Ward
SM: Expression of anoctamin 1/TMEM16A by interstitial cells of
Cajal is fundamental for slow wave activity in gastrointestinal
muscles. J Physiol. 587:4887–4904. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Svenningsen P, Nielsen MR, Marcussen N,
Walter S and Jensen BL: TMEM16A is a Ca(2+)-activated Cl(−) channel
expressed in the renal collecting duct. Acta Physiol (Oxf).
212:166–174. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Qu Z, Wang B, Zhang Z, Ma L, Li D, Zhuang
L, Chi J and Liu J: Functions of ANO1/TMEM16A, Ca2+-activated
Cl-channels in regulation of blood pressure and vascular
remodeling. J Cardiol Ther. 3:543–548. 2016. View Article : Google Scholar
|
32
|
Wang M, Yang H, Zheng LY, Zhang Z, Tang
YB, Wang GL, Du YH, Lv XF, Liu J, Zhou JG and Guan YY:
Downregulation of TMEM16A calcium-activated chloride channel
contributes to cerebrovascular remodeling during hypertension by
promoting basilar smooth muscle cell proliferation. Circulation.
125:697–707. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Galán M, Varona S, Guadall A, Orriols M,
Navas M, Aguiló S, de Diego A, Navarro MA, García-Dorado D,
Rodríguez-Sinovas A, et al: Lysyl oxidase overexpression
accelerates cardiac remodeling and aggravates angiotensin
II-induced hypertrophy. FASEB J. 31:3787–3799. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Li J, Li Y, Zhang Y, Hu D, Gao Y, Shang H
and Xing Y: The inhibitory effect of WenxinKeli on H9C2
cardiomyocytes hypertrophy induced by angiotensin II through
regulating autophagy activity. Oxid Med Cell Longev.
2017:70428722017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chen L, Zhao L, Samanta A, Mahmoudi SM,
Buehler T, Cantilena A, Vincent RJ, Girgis M, Breeden J, Asante S,
et al: STAT3 balances myocyte hypertrophy vis-à-vis autophagy in
response to Angiotensin II by modulating the AMPKα/mTOR axis. PLoS
One. 12:e01798352017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lu Y, Guo H, Sun Y, Pan X, Dong J, Gao D,
Chen W, Xu Y and Xu D: Valsartan attenuates pulmonary hypertension
via suppression of mitogen activated protein kinase signaling and
matrix metalloproteinase expression in rodents. Mol Med Rep.
16:1360–1368. 2017.PubMed/NCBI
|
37
|
Bataller R, Ginès P, Nicolás JM, Görbig
MN, Garcia-Ramallo E, Gasull X, Bosch J, Arroyo V and Rodés J:
Angiotensin II induces contraction and proliferation of human
hepatic stellate cells. Gastroenterology. 118:1149–1156. 2000.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Daemen MJ, Lombardi DM, Bosman FT and
Schwartz SM: Angiotensin II induces smooth muscle cell
proliferation in the normal and injured rat arterial wall. Circ
Res. 68:450–456. 1991. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang XH, Zheng B, Yang Z, He M, Yue LY,
Zhang RN, Zhang M, Zhang W, Zhang X and Wen JK: TMEM16A and
myocardin form a positive feedback loop that is disrupted by KLF5
during Ang II-induced vascular remodeling. Hypertension.
66:412–421. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhang L, Yang Z, Shi BM, Li DP, Fang CY
and Qiu FZ: Expression of local renin and angiotensinogen mRNA in
cirrhotic portal hypertensive patient. World J Gastroenterol.
9:1584–1588. 2003. View Article : Google Scholar : PubMed/NCBI
|
41
|
Deng L, Yang J, Chen H, Ma B, Pan K, Su C,
Xu F and Zhang J: Knockdown of TMEM16A suppressed MAPK and
inhibited cell proliferation and migration in hepatocellular
carcinoma. Onco Targets Ther. 14:325–333. 2016.
|
42
|
Matrougui K, Eskildsen-Helmond YE,
Fiebeler A, Henrion D, Levy BI, Tedgui A and Mulvany MJ:
Angiotensin II stimulates extracellular signal-regulated kinase
activity in intact pressurized rat mesenteric resistance arteries.
Hypertension. 36:617–621. 2000. View Article : Google Scholar : PubMed/NCBI
|