1
|
Lalwani G, Henslee AM, Farshid B, Lin L,
Kasper FK, Qin YX, Mikos AG and Sitharaman B: Two-dimensional
nanostructure-reinforced biodegradable polymeric nanocomposites for
bone tissue engineering. Biomacromolecules. 14:900–909. 2013.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Xia Z, Yu X, Jiang X, Brody HD, Rowe DW
and Wei M: Fabrication and characterization of biomimetic
collagen-apatite scaffolds with tunable structures for bone tissue
engineering. Acta Biomater. 9:7308–7319. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Petrauskaite O, Gomes Pde S, Fernandes MH,
Juodzbalys G, Stumbras A, Maminskas J, Liesiene J and Cicciù M:
Biomimetic mineralization on a macroporous cellulose-based matrix
for bone regeneration. Biomed Res Int. 2013:4527502013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Visser R, Rico-Llanos GA, Pulkkinen H and
Becerra J: Peptides for bone tissue engineering. J Control Release.
244:122–135. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rogers GF and Greene AK: Autogenous bone
graft: Basic science and clinical implications. J Craniofac Surg.
23:323–327. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Fernandez-Bances I, Perez-Basterrechea M,
Perez-Lopez S, Nuñez Batalla D, Fernandez Rodriguez MA,
Alvarez-Viejo M, Ferrero-Gutierrez A, Menendez Menendez Y,
Garcia-Gala JM, Escudero D, et al: Repair of long-bone
pseudoarthrosis with autologous bone marrow mononuclear cells
combined with allogenic bone graft. Cytotherapy. 15:571–577. 2013.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Feng Y, Wang S, Jin D, Sheng J, Chen S,
Cheng X and Zhang C: Free vascularised fibular grafting with
OsteoSet®2 demineralised bone matrix versus autograft
for large osteonecrotic lesions of the femoral head. Int Orthop.
35:475–481. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Genuario JW, Faucett SC, Boublik M and
Schlegel TF: A cost-effectiveness analysis comparing 3 anterior
cruciate ligament graft types: Bone-patellar tendon-bone autograft,
hamstring autograft, and allograft. Am J Sports Med. 40:307–314.
2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Laino L, Iezzi G, Piattelli A, Lo Muzio L
and Cicciù M: Vertical ridge augmentation of the atrophic posterior
mandible with sandwich technique: Bone block from the chin area
versus corticocancellous bone block allograft-clinical and
histological prospective randomized controlled study. Biomed Res
Int. 2014:9821042014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Petite H, Viateau V, Bensaïd W, Meunier A,
de Pollak C, Bourguignon M, Oudina K, Sedel L and Guillemin G:
Tissue-engineered bone regeneration. Nat Biotechnol. 18:959–963.
2000. View Article : Google Scholar : PubMed/NCBI
|
11
|
Widuchowski W, Widuchowska M, Koczy B,
Dragan S, Czamara A, Tomaszewski W and Widuchowski J: Femoral
press-fit fixation in ACL reconstruction using bone-patellar
tendon-bone autograft: Results at 15 years follow-up. BMC
Musculoskelet Disord. 13:1152012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Herford AS, Tandon R, Stevens TW,
Stoffella E and Cicciu M: Immediate distraction osteogenesis: The
sandwich technique in combination with rhBMP-2 for anterior
maxillary and mandibular defects. J Craniofac Surg. 24:1383–1387.
2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lissenberg-Thunnissen SN, de Gorter DJ,
Sier CF and Schipper IB: Use and efficacy of bone morphogenetic
proteins in fracture healing. Int Orthop. 35:1271–1280. 2011.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Habibovic P and Barralet JE: Bioinorganics
and biomaterials: Bone repair. Acta Biomater. 7:3013–3026. 2011.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Tian H, Bi X, Li CS, Zhao KW, Brochmann
EJ, Montgomery SR, Aghdasi B, Chen D, Daubs MD, Wang JC and Murray
SS: Secreted phosphoprotein 24 kD (Spp24) and Spp14 affect TGF-β
induced bone formation differently. PLoS One. 8:e726452013.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Sharma AK, Bury MI, Fuller NJ, Rozkiewicz
DI, Hota PV, Kollhoff DM, Webber MJ, Tapaskar N, Meisner JW,
Lariviere PJ, et al: Growth factor release from a chemically
modified elastomeric poly(1,8-octanediol-co-citrate) thin film
promotes angiogenesis in vivo. J Biomed Mater Res A. 100:561–570.
2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Oryan A, Alidadi S, Moshiri A and
Bigham-Sadegh A: Bone morphogenetic proteins: A powerful
osteoinductive compound with non-negligible side effects and
limitations. Biofactors. 40:459–481. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Martínez A, Arana P, Fernández A, Olmo R,
Teijón C and Blanco MD: Synthesis and characterisation of
alginate/chitosan nanoparticles as tamoxifen controlled delivery
systems. J Microencapsul. 30:398–408. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Cicciù M, Herford AS, Cicciù D, Tandon R
and Maiorana C: Recombinant human bone morphogenetic protein-2
promote and stabilize hard and soft tissue healing for large
mandibular new bone reconstruction defects. J Craniofac Surg.
25:860–862. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Retraction note: Drying of a plasmid
containing formulation: Chitosan as a protecting agent. Daru.
24:112016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Jun SH, Lee EJ, Jang TS, Kim HE, Jang JH
and Koh YH: Bone morphogenic protein-2 (BMP-2) loaded hybrid
coating on porous hydroxyapatite scaffolds for bone tissue
engineering. J Mater Sci Mater Med. 24:773–782. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Nitta SK and Numata K: Biopolymer-based
nanoparticles for drug/gene delivery and tissue engineering. Int J
Mol Sci. 14:1629–1654. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cheburu CN, Stoica B, Neamţu A and Vasile
C: Biocompatibility testing of chitosan hydrogels. Rev Med Chir Soc
Med Nat Iasi. 115:864–870. 2011.PubMed/NCBI
|
24
|
Honarkar H and Barikani M: Applications of
biopolymers I: Chitosan. Monatshefte für Chemie-Chem Month.
140:14032009. View Article : Google Scholar
|
25
|
Budiraharjo R, Neoh KG and Kang ET:
Enhancing bioactivity of chitosan film for osteogenesis and wound
healing by covalent immobilization of BMP-2 or FGF-2. J Biomater
Sci Polym Ed. 24:645–662. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Islam MA, Firdous J, Choi YJ, Yun CH and
Cho CS: Design and application of chitosan microspheres as oral and
nasal vaccine carriers: An updated review. Int J Nanomedicine.
7:6077–6093. 2012.PubMed/NCBI
|
27
|
Fan H, Li H, Zhang M and Middaugh CR:
Effects of solutes on empirical phase diagrams of human fibroblast
growth factor 1. J Pharm Sci. 96:1490–1503. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
des Rieux A, Ucakar B, Mupendwa BP, Colau
D, Feron O, Carmeliet P and Préat V: 3D systems delivering VEGF to
promote angiogenesis for tissue engineering. J Control Release.
150:272–278. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sullad AG, Manjeshwer LS and Aminabhavi
TM: Novel semi-interpenetrating microspheres of
dextran-grafted-acrylamide and Poly(Vinyl Alcohol) for controlled
release of abacavir sulfate. I & Eng Chem Res.
50:pp11778–11784. 2011. View Article : Google Scholar
|
30
|
Gribova V, Crouzier T and Picart C: A
material's point of view on recent developments of polymeric
biomaterials: Control of mechanical and biochemical properties. J
Mater Chem. 21:14354–14366. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hudalla GA and Murphy WL: Biomaterials
that regulate growth factor activity via bioinspired interactions.
Adv Funct Mater. 21:1754–1768. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lewis RA: Hawley's Condensed Chemical
Dictionary. 16th. John Wiley & Sons; Hoboken, NJ: 2016
|
33
|
Palazzo B, Gallo A, Casillo A, Nitti P,
Ambrosio L and Piconi C: Fabrication, characterization and cell
cultures on a novel composite chitosan-nano-hydroxyapatite
scaffold. Int J Immunopathol Pharmacol. 24 1 Suppl 2:S73–S78. 2011.
View Article : Google Scholar
|
34
|
Raghunath J, Salacinski HJ, Sales KM,
Butler PE and Seifalian AM: Advancing cartilage tissue engineering:
The application of stem cell technology. Curr Opin Biotechnol.
16:503–509. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ma HL, Chen TH, Low-Tone Ho L and Hung SC:
Neocartilage from human mesenchymal stem cells in alginate: Implied
timing of transplantation. J Biomed Mater Res A. 74:439–446. 2005.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Majumdar MK, Wang E and Morris EA: BMP-2
and BMP-9 promotes chondrogenic differentiation of human
multipotential mesenchymal cells and overcomes the inhibitory
effect of IL-1. J Cell Physiol. 189:275–284. 2001. View Article : Google Scholar : PubMed/NCBI
|
37
|
Tsiridis E, Upadhyay N and Giannoudis P:
Molecular aspects of fracture healing: Which are the important
molecules? Injury. 38 Suppl 1:S11–S25. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Herford AS, Cicciù M, Eftimie LF, Miller
M, Signorino F, Famà F, Cervino G, Giudice GL, Bramanti E,
Lauritano F, et al: rhBMP-2 applied as support of distraction
osteogenesis: A split-mouth histological study over nonhuman
primates mandibles. Int J Clin Exp Med. 9:17187–17194. 2016.
|