1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Baig JA, Alam JM, Mahmood SR, Baig M,
Shaheen R, Sultana I and Waheed A: Hepatocellular carcinoma (HCC)
and diagnostic significance of A-fetoprotein (AFP). J Ayub Med Coll
Abbottabad. 21:72–75. 2009.PubMed/NCBI
|
4
|
Zhao YJ, Ju Q and Li GC: Tumor markers for
hepatocellular carcinoma. Mol Clin Oncol. 1:593–598. 2013.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Nakashima M, Toyono T, Akamine A and
Joyner A: Expression of growth/differentiation factor 11, a new
member of the BMP/TGFbeta superfamily during mouse embryogenesis.
Mech Dev. 80:185–189. 1999. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gamer LW, Wolfman NM, Celeste AJ,
Hattersley G, Hewick R and Rosen V: A novel BMP expressed in
developing mouse limb, spinal cord, and tail bud is a potent
mesoderm inducer in Xenopus embryos. Dev Biol. 208:222–232. 1999.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Essalmani R, Zaid A, Marcinkiewicz J,
Chamberland A, Pasquato A, Seidah NG and Prat A: In vivo functions
of the proprotein convertase PC5/6 during mouse development: Gdf11
is a likely substrate. Proc Natl Acad Sci USA. 105:pp. 5750–5755.
2008; View Article : Google Scholar : PubMed/NCBI
|
8
|
Tsuda T, Iwai N, Deguchi E, Kimura O, Ono
S, Furukawa T, Sasaki Y, Fumino S and Kubota Y: PCSK5 and GDF11
expression in the hindgut region of mouse embryos with anorectal
malformations. Eur J Pediatr Surg. 21:238–241. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Rochette L, Zeller M, Cottin Y and Vergely
C: Growth and differentiation factor 11 (GDF11): Functions in the
regulation of erythropoiesis and cardiac regeneration. Pharmacol
Ther. 156:26–33. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Camici GG, Savarese G, Akhmedov A and
Lüscher TF: Molecular mechanism of endothelial and vascular aging:
Implications for cardiovascular disease. Eur Heart J. 36:3392–3403.
2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yokoe T, Ohmachi T, Inoue H, Mimori K,
Tanaka F, Kusunoki M and Mori M: Clinical significance of growth
differentiation factor 11 in colorectal cancer. Int J Oncol.
31:1097–1101. 2007.PubMed/NCBI
|
12
|
Smith SC, Zhang X, Zhang X, Gross P,
Starosta T, Mohsin S, Franti M, Gupta P, Hayes D, Myzithras M, et
al: GDF11 does not rescue aging-related pathological hypertrophy.
Circ Res. 117:926–932. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Loffredo FS, Steinhauser ML, Jay SM,
Gannon J, Pancoast JR, Yalamanchi P, Sinha M, Dall'Osso C, Khong D,
Shadrach JL, et al: Growth differentiation factor 11 is a
circulating factor that reverses age-related cardiac hypertrophy.
Cell. 153:828–839. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang YH, Cheng F, Du XT, Gao JL, Xiao XL,
Li N, Li SL and Dong de L: GDF11/BMP11 activates both Smad1/5/8 and
Smad2/3 signals but shows no significant effect on proliferation
and migration of human umbilical vein endothelial cells.
Oncotarget. 7:11063–11074. 2016.
|
15
|
Farooq M, SuLochana KN, Pan X, To J, Sheng
D, Gong Z and Ge R: Histone deacetylase3(HDAC3) is specifically
required for liver development in zebrafish. Dev Biol. 317:336–353.
2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Bajikar SS, Wang CC, Borten MA, Pereira
EJ, Atkins KA and Janes KA: Tumor-suppressor inactivation of GDF11
occurs by precursor sequestration in triple-negative breast cancer.
Dev Cell. 43:418–435. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Alvarez C, Aravena A, Tapia T, Rozenblum
E, Solís L, Corvalán A, Camus M, Alvarez M, Munroe D, Maass A and
Carvallo P: Different Array CGH profiles within hereditary breast
cancer tumors associated to BRCA1 expression and overall survival.
BMC Cancer. 16:2192016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Auguściak-Duma A and Sieroń AL: Molecular
characteristics of leiomyoma uteri based on selected compounds of
the extracellular matrix. Postepy Hig Med Dosw (Online).
62:148–165. 2008.(In Polish). PubMed/NCBI
|
19
|
McNally EM: Questions and answers about
myostatin, GDF11, and the aging heart. Circ Res. 118:6–8. 2016.
View Article : Google Scholar : PubMed/NCBI
|
20
|
López-Terrada D, Cheung SW, Finegold MJ
and Knowles BB: Hep G2 is a hepatoblastoma-derived cell line. Hum
Pathol. 40:1512–1515. 2009. View Article : Google Scholar
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Sheng Y, Sun B, Guo WT, Liu X, Wang YC,
Xie X, Xiao XL, Li N and Dong DL:
[4-(6-(4-isopropoxyphenyl)pyrazolo(1,5-a)pyrimidin-3-yl)quinoline]
is a novel inhibitor of autophagy. Br J Pharmacol. 171:4970–4980.
2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Dwivedi SK, McMeekin SD, Slaughter K and
Bhattacharya R: Role of TGF-β signaling in uterine carcinosarcoma.
Oncotarget. 6:14646–14655. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Levy L and Hill CS: Alterations in
components of the TGF-beta superfamily signaling pathways in human
cancer. Cytokine Growth Factor Rev. 17:41–58. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Prunier C, Ferrand N, Frottier B, Pessah M
and Atfi A: Mechanism for mutational inactivation of the tumor
suppressor Smad2. Mol Cell Biol. 21:3302–3313. 2001. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yang J, Wahdan-Alaswad R and Danielpour D:
Critical role of Smad2 in tumor suppression and transforming growth
factor-beta-induced apoptosis of prostate epithelial cells. Cancer
Res. 69:2185–2190. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Millet C and Zhang YE: Roles of Smad3 in
TGF-beta signaling during carcinogenesis. Crit Rev Eukaryot Gene
Expr. 17:281–293. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ropero S and Esteller M: The role of
histone deacetylases (HDACs) in human cancer. Mol Oncol. 1:19–25.
2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Li Y and Seto E: HDACs and HDAC inhibitors
in cancer development and therapy. Cold Spring Harb Perspect Med.
6(pii): a0268312016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Egerman MA, Cadena SM, Gilbert JA, Meyer
A, Nelson HN, Swalley SE, Mallozzi C, Jacobi C, Jennings LL, Clay
I, et al: GDF11 increases with age and inhibits skeletal muscle
regeneration. Cell Metab. 22:164–174. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lebrun JJ: The dual role of TGFβ in human
cancer: From tumor suppression to cancer metastasis. ISRN Mol Biol.
2012:3814282012. View Article : Google Scholar : PubMed/NCBI
|