1
|
Lin W, Li Y, Chen F, Yin S, Liu Z and Cao
W: Klotho preservation via histone deacetylase inhibition
attenuates chronic kidney disease-associated bone injury in mice.
Sci Rep. 7:461952017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kochanek M, Said A and Lerma EV: Mineral
metabolism in chronic kidney disease. Dis Mon. 61:425–433. 2015.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Naylor KL, McArthur E, Leslie WD, Fraser
LA, Jamal SA, Cadarette SM, Pouget JG, Lok CE, Hodsman AB, Adachi
JD and Garg AX: The three-year incidence of fracture in chronic
kidney disease. Kidney Int. 86:810–818. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
El Desoky S, Farag YM, Safdar E, Shalaby
MA, Singh AK and Kari JA: Prevalence of hyperparathyroidism,
mineral and bone disorders in children with advanced chronic kidney
disease. Indian J Pediatr. 83:420–425. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Song Q and Sergeev IN: Calcium and vitamin
D in obesity. Nutr Res Rev. 25:130–141. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Johnston CC Jr, Miller JZ, Slemenda CW,
Reister TK, Hui S, Christian JC and Peacock M: Calcium
supplementation and increases in bone mineral density in children.
N Engl J Med. 327:82–87. 1992. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lee WT, Leung SS, Wang SH, Xu YC, Zeng WP,
Lau J, Oppenheimer SJ and Cheng JC: Double-blind, controlled
calcium supplementation and bone mineral accretion in children
accustomed to a low-calcium diet. Am J Clin Nutr. 60:744–750. 1994.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Katsumata S, Matsuzaki H, Uehara M and
Suzuki K: Effects of dietary calcium supplementation on bone
metabolism, kidney mineral concentrations, and kidney function in
rats fed a high-phosphorus diet. J Nutr Sci Vitaminol (Tokyo).
61:195–200. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Song Q and Sergeev IN: High vitamin D and
calcium intakes increase bone mineral (Ca and P) content in
high-fat diet-induced obese mice. Nutr Res. 35:146–154. 2015.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Ferrari GO, Ferreira JC, Cavallari RT,
Neves KR, dos Reis LM, Dominguez WV, Oliveira EC, Graciolli FG,
Passlick-Deetjen J, Jorgetti V and Moysés RM: Mineral bone disorder
in chronic kidney disease: Head-to-head comparison of the 5/6
nephrectomy and adenine models. BMC Nephrol. 15:692014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Heveran CM, Ortega AM, Cureton A, Clark R,
Livingston EW, Bateman TA, Levi M, King KB and Ferguson VL:
Moderate chronic kidney disease impairs bone quality in C57Bl/6J
mice. Bone. 86:1–9. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Souza AC, Tsuji T, Baranova IN, Bocharov
AV, Wilkins KJ, Street JM, Alvarez-Prats A, Hu X, Eggerman T, Yuen
PS and Star RA: TLR4 mutant mice are protected from renal fibrosis
and chronic kidney disease progression. Physiol Rep. 3:e125582015.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Löwe A, Breuer J and Palkowitsch P:
Evaluation of the effect of two gadolinium-containing
contrast-enhancing agents, gadobutrol and gadoxetate disodium, on
colorimetric calcium determinations in serum and plasma. Invest
Radiol. 46:366–369. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Massoomi F, Mathews HG III and Destache
CJ: Effect of seven fluoroquinolones on the determination of serum
creatinine by the picric acid and enzymatic methods. Ann
Pharmacother. 27:586–588. 1993. View Article : Google Scholar : PubMed/NCBI
|
15
|
Sun D, Feng J, Dai C, Sun L, Jin T, Ma J
and Wang L: Role of peritubular capillary loss and hypoxia in
progressive tubulointerstitial fibrosis in a rat model of
aristolochic acid nephropathy. Am J Nephrol. 26:363–371. 2006.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Fan HY, Qi D, Yu C, Zhao F, Liu T, Zhang
ZK, Yang MY, Zhang LM, Chen DQ and Du Y: Paeonol protects
endotoxin-induced acute kidney injury: Potential mechanism of
inhibiting TLR4-NF-kappaB signal pathway. Oncotarget.
7:39497–39510. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Kakareko K, Rydzewska-Rosolowska A,
Brzosko S, Gozdzikiewicz-Lapinska J, Koc-Zorawska E, Samocik P,
Kozlowski R, Mysliwiec M, Naumnik B and Hryszko T: The effect of
nephrectomy on Klotho, FGF-23 and bone metabolism. Int Urol
Nephrol. 49:681–688. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Nitta K, Nagano N and Tsuchiya K:
Fibroblast growth factor 23/klotho axis in chronic kidney disease.
Nephron Clin Pract. 128:1–10. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Christov M, Waikar SS, Pereira RC, Havasi
A, Leaf DE, Goltzman D, Pajevic PD, Wolf M and Jüppner H: Plasma
FGF23 levels increase rapidly after acute kidney injury. Kidney
Int. 84:776–785. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lavi-Moshayoff V, Wasserman G, Meir T,
Silver J and Naveh-Many T: PTH increases FGF23 gene expression and
mediates the high-FGF23 levels of experimental kidney failure: A
bone parathyroid feedback loop. Am J Physiol Renal Physiol.
299:F882–F889. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wu Y, Lee JW, Uy L, Abosaleem B, Gunn H,
Ma M and DeSilva B: Tartrate-resistant acid phosphatase (TRACP 5b):
A biomarker of bone resorption rate in support of drug development:
Modification, validation and application of the BoneTRAP kit assay.
J Pharm Biomed Anal. 49:1203–1212. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
An J, Yang H, Zhang Q, Liu C, Zhao J,
Zhang L and Chen B: Natural products for treatment of osteoporosis:
The effects and mechanisms on promoting osteoblast-mediated bone
formation. Life Sci. 147:46–58. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Haussler MR, Whitfield GK, Kaneko I,
Forster R, Saini R, Hsieh JC, Haussler CA and Jurutka PW: The role
of vitamin D in the FGF23, klotho, and phosphate bone-kidney
endocrine axis. Rev Endocr Metab Disord. 13:57–69. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Martin A and Quarles LD: Evidence for
FGF23 involvement in a bone-kidney axis regulating bone
mineralization and systemic phosphate and vitamin D homeostasis.
Adv Exp Med Biol. 728:65–83. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Pitari MR, Rossi M, Amodio N, Botta C,
Morelli E, Federico C, Gullà A, Caracciolo D, Di Martino MT,
Arbitrio M, et al: Inhibition of miR-21 restores RANKL/OPG ratio in
multiple myeloma-derived bone marrow stromal cells and impairs the
resorbing activity of mature osteoclasts. Oncotarget.
6:27343–27358. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Walsh MC and Choi Y: Biology of the
RANKL-RANK-OPG system in immunity, bone, and beyond. Front Immunol.
5:5112014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hill Gallant KM and Spiegel DM: Calcium
balance in chronic kidney disease. Curr Osteoporos Rep. 15:214–221.
2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hill KM, Martin BR, Wastney ME, McCabe GP,
Moe SM, Weaver CM and Peacock M: Oral calcium carbonate affects
calcium but not phosphorus balance in stage 3–4 chronic kidney
disease. Kidney Int. 83:959–966. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bosworth C, de Boer IH, Targher G,
Kendrick J, Smits G and Chonchol M: The effect of combined calcium
and cholecalciferol supplementation on bone mineral density in
elderly women with moderate chronic kidney disease. Clin Nephrol.
77:358–365. 2012. View
Article : Google Scholar : PubMed/NCBI
|
31
|
Charoenphandhu N, Tudpor K, Thongchote K,
Saengamnart W, Puntheeranurak S and Krishnamra N: High-calcium diet
modulates effects of long-term prolactin exposure on the cortical
bone calcium content in ovariectomized rats. Am J Physiol
Endocrinol Metab. 292:E443–E452. 2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Fonseca D and Ward WE: Daidzein together
with high calcium preserve bone mass and biomechanical strength at
multiple sites in ovariectomized mice. Bone. 35:489–497. 2004.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Naitoh M, Takada ST, Kurosu Y, Inagaki K,
Mitani A and Ariji E: Relationship between findings of mandibular
cortical bone in inferior border and bone mineral densities of
lumbar vertebrae in postmenopausal women. Okajimas Folia Anat Jpn.
91:49–55. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Naylor KL, Lix LM, Hans D, Garg AX, Rush
DN, Hodsman AB and Leslie WD: Trabecular bone score in kidney
transplant recipients. Osteoporos Int. 27:1115–1121. 2016.
View Article : Google Scholar : PubMed/NCBI
|
35
|
van Heerden B, Kasonga A, Kruger MC and
Coetzee M: Palmitoleic acid inhibits RANKL-induced
osteoclastogenesis and bone resorption by suppressing NF-kappaB and
MAPK signalling pathways. Nutrients. 9:E4412017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Piri F, Khosravi A, Moayeri A, Moradipour
A and Derakhshan S: The effects of dietary supplements of calcium,
vitamin D and estrogen hormone on serum levels of OPG and RANKL
cytokines and their relationship with increased bone density in
Rats. J Clin Diagn Res. 10:AF01–AF04. 2016.PubMed/NCBI
|
37
|
Stubbs J, Liu S and Quarles LD: Role of
fibroblast growth factor 23 in phosphate homeostasis and
pathogenesis of disordered mineral metabolism in chronic kidney
disease. Semin Dial. 20:302–308. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
David V, Dai B, Martin A, Huang J, Han X
and Quarles LD: Calcium regulates FGF-23 expression in bone.
Endocrinology. 154:4469–4482. 2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Rodriguez-Ortiz ME, Lopez I,
Muñoz-Castañeda JR, Martinez-Moreno JM, Ramírez AP, Pineda C,
Canalejo A, Jaeger P, Aguilera-Tejero E, Rodriguez M, et al:
Calcium deficiency reduces circulating levels of FGF23. J Am Soc
Nephrol. 23:1190–1197. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Liu S, Tang W, Zhou J, Stubbs JR, Luo Q,
Pi M and Quarles LD: Fibroblast growth factor 23 is a
counter-regulatory phosphaturic hormone for vitamin D. J Am Soc
Nephrol. 17:1305–1315. 2006. View Article : Google Scholar : PubMed/NCBI
|
41
|
Imanishi Y, Inaba M, Nakatsuka K, Nagasue
K, Okuno S, Yoshihara A, Miura M, Miyauchi A, Kobayashi K, Miki T,
et al: FGF-23 in patients with end-stage renal disease on
hemodialysis. Kidney Int. 65:1943–1946. 2004. View Article : Google Scholar : PubMed/NCBI
|
42
|
Penido MGMG and Alon US: Phosphate
homeostasis and its role in bone health. Pediatr Nephrol.
27:2039–2048. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Nickolas TL and Jamal SA: Bone kidney
interactions. Rev Endocr Metab Disord. 16:157–163. 2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Spiegel DM and Brady K: Calcium balance in
normal individuals and in patients with chronic kidney disease on
low- and high-calcium diets. Kidney Int. 81:1116–1122. 2012.
View Article : Google Scholar : PubMed/NCBI
|