1
|
Huang Q, Zhou ZK, Ma J, Li Y, Yang X, Shen
B, Yang J, Kang PD and Pei FX: The arthropathic and functional
impairment features of adult Kashin-Beck disease patients in Aba
Tibetan area in China. Osteoarthritis Cartilage. 23:601–606. 2015.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Yaqun K, Ren Pbc, Jun W, Pei Jcq, Jia Zwg
and Ta Dzs: To investigate and analyze the condition of
Kaschin-Beck disease around 7–12 years old children in Bianba
county of Tibet in 2013. Chin J Infect Control. 5:350–351.
2014.
|
3
|
Lei R, Jiang N, Zhang Q, Hu S, Dennis BS,
He S and Guo X: Prevalence of selenium, T-2 toxin and
deoxynivalenol in kashin-beck disease areas in qinghai province,
Northwest China. Biol Trace Elem Res. 171:34–40. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang J, Li H, Yang L, Li Y, Wei B, Yu J
and Feng F: Distribution and translocation of selenium from soil to
highland barley in the Tibetan plateau kashin-beck disease area.
Environ Geochem Health. 39:221–229. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Dai X, Li Y, Zhang R, Kou Y, Mo X, Cao J
and Xiong Y: Effects of sodium selenite on c-Jun N-terminal kinase
signalling pathway induced by oxidative stress in human
chondrocytes and c-Jun N-terminal kinase expression in patients
with Kashin-Beck disease, an endemic osteoarthritis. Br J Nutr.
115:1547–1555. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Dermience M, Lognay G, Mathieu F and
Goyens P: Effects of thirty elements on bone metabolism. J Trace
Elem Med Biol. 32:86–106. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Dermience M, Mathieu F, Li XW,
Vandevijvere S, Claus W, De Maertelaer V, Dufourny G, Bin L,
Yangzom D and Lognay G: Minerals and trace elements intakes and
food consumption patterns of young children living in rural areas
of Tibet autonomous region, P.R. China: A cross-sectional survey.
Healthcare (Basel). 5(pii): E122017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wang X, Zhang Y, Chang Y, Duan D, Sun Z
and Guo X: Elevation of IGFBP2 contributes to mycotoxin T-2-induced
chondrocyte injury and metabolism. Biochem Biophys Res Commun.
478:385–391. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Chen JH, Xue S, Li S, Wang ZL, Yang H,
Wang W, Song D, Zhou X and Chen C: Oxidant damage in Kashin-Beck
disease and a rat Kashin-Beck disease model by employing T-2 toxin
treatment under selenium deficient conditions. J Orthop Res.
30:1229–1237. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Shi XW, Guo X, Ren FL, Lü AL and Zhang YZ:
Familial aggregation and sibling heritability in Kashin-Beck
disease. Nan Fang Yi Ke Da Xue Xue Bao. 28:1187–1189. 2008.(In
Chinese). PubMed/NCBI
|
11
|
Shi XW, Lv AL, Ren FL, Li WR, Kang LL and
Guo X: Transmission disequilibrium test for 15 short tandem repeat
loci in Kashin-Beck disease and their interaction with low
selenium. Nan Fang Yi Ke Da Xue Xue Bao. 31:567–571. 2011.(In
Chinese). PubMed/NCBI
|
12
|
Guo X, Ma WJ, Zhang F, Ren FL, Qu CJ and
Lammi MJ: Recent advances in the research of an endemic
osteochondropathy in China: Kashin-Beck disease. Osteoarthritis
Cartilage. 22:1774–1783. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yu FF, Han J, Wang X, Fang H, Liu H and
Guo X: Salt-rich selenium for prevention and control children with
Kashin-Beck disease: A meta-analysis of community-based trial. Biol
Trace Elem Res. 170:25–32. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sun LY, Li Q, Meng FG, Fu Y, Zhao ZJ and
Wang LH: T-2 toxin contamination in grains and selenium
concentration in drinking water and grains in Kaschin-Beck disease
endemic areas of qinghai province. Biol Trace Elem Res.
150:371–375. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhou X, Wang Z, Chen J, Wang W, Song D, Li
S, Yang H, Xue S and Chen C: Increased levels of IL-6, IL-1β, and
TNF-α in Kashin-Beck disease and rats induced by T-2 toxin and
selenium deficiency. Rheumatol Int. 34:995–1004. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ning YJ, Wang X, Wang S, Zhang F, Zhang L,
Lei Y and Guo X: Is it the appropriate time to stop applying
selenium enriched salt in Kashin-Beck disease areas in China?
Nutrients. 7:6195–6212. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ning YJ, Wang X, Ren L and Guo X: Effects
of dietary factors on selenium levels of children to prevent
Kashin-Beck disease during a high-prevalence period in an endemic
area: A cohort study. Biol Trace Elem Res. 153:58–68. 2013.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Yu FF, Liu H and Guo X: Integrative
multivariate logistic regression analysis of risk factors for
Kashin-Beck disease. Biol Trace Elem Res. 174:274–279. 2016.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Huang H, Li F, Yang X, et al: The
Evaluation result analysis of control and elimination of
kaschin-beck disease in 32 counties of sichuan province. J Prev Med
Inf. 33:355–360. 2017.
|
20
|
Gong H-q, Zhao S-c, Ni M-c-j, Guo M and Li
Q-w: Monitoring report of Kashin-Beck disease in Changdu Region of
Tibet in 2014. Foreign Med Sci Section Med. 36:270–273. 2015.
|
21
|
Votteler J, Ogohara C, Yi S, Hsia Y,
Nattermann U, Belnap DM, King NP and Sundquist WI: Designed
proteins induce the formation of nanocage-containing extracellular
vesicles. Nature. 540:292–295. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zempleni J, Aguilar-Lozano A, Sadri M,
Sukreet S, Manca S, Wu D, Zhou F and Mutai E: Biological activities
of extracellular vesicles and their cargos from bovine and human
milk in humans and implications for infants. J Nutr. 147:3–10.
2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yáñez-Mó M, Siljander PR, Andreu Z, Zavec
AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J,
et al: Biological properties of extracellular vesicles and their
physiological functions. J Extracell Vesicles. 4:270662015.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Sun J, Aswath K, Schroeder SG, Lippolis
JD, Reinhardt TA and Sonstegard TS: MicroRNA expression profiles of
bovine milk exosomes in response to Staphylococcus aureus
infection. BMC Genomics. 16:8062015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kato T, Miyaki S, Ishitobi H, Nakamura Y,
Nakasa T, Lotz MK and Ochi M: Exosomes from IL-1β stimulated
synovial fibroblasts induce osteoarthritic changes in articular
chondrocytes. Arthritis Res Ther. 16:R1632014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Withrow J, Murphy C, Liu Y, Hunter M,
Fulzele S and Hamrick MW: Extracellular vesicles in the
pathogenesis of rheumatoid arthritis and osteoarthritis. Arthritis
Res Ther. 18:2862016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chen J, Luo M, Wang W, Zhang Z, He Y,
Duance VC, Hughes CE, Caterson B and Cao J: Altered proteolytic
activity and expression of MMPs and aggrecanases and their
inhibitors in Kashin-Beck disease. J Orthop Res. 33:47–55. 2015.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Tao SC, Yuan T, Zhang YL, Yin WJ, Guo SC
and Zhang CQ: Exosomes derived from miR-140-5p-overexpressing human
synovial mesenchymal stem cells enhance cartilage tissue
regeneration and prevent osteoarthritis of the knee in a rat model.
Theranostics. 7:180–195. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang Y, Yu D, Liu Z, Zhou F, Dai J, Wu B,
Zhou J, Heng BC, Zou XH, Ouyang H and Liu H: Exosomes from
embryonic mesenchymal stem cells alleviate osteoarthritis through
balancing synthesis and degradation of cartilage extracellular
matrix. Stem Cell Res Ther. 8:1892017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang S, Chu WC, Lai RC, Lim SK, Hui JH
and Toh WS: Exosomes derived from human embryonic mesenchymal stem
cells promote osteochondral regeneration. Osteoarthritis Cartilage.
24:2135–2140. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Toh WS, Lai RC, Hui JHP and Lim SK: MSC
exosome as a cell-free MSC therapy for cartilage regeneration:
Implications for osteoarthritis treatment. Semin Cell Dev Biol.
67:56–64. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Mao G, Zhang Z, Huang Z, Chen W, Huang G,
Meng F, Zhang Z and Kang Y: MicroRNA-92a-3p regulates the
expression of cartilage-specific genes by directly targeting
histone deacetylase 2 in chondrogenesis and degradation.
Osteoarthritis Cartilage. 25:521–532. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Gabler J, Ruetze M, Kynast KL, Grossner T,
Diederichs S and Richter W: Stage-specific miRs in chondrocyte
maturation: Differentiation-dependent and hypertrophy-related miR
clusters and the miR-181 family. Tissue Eng Part A. 21:2840–2851.
2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Liu H, Hao W, Wang X and Su H: miR-23b
targets Smad 3 and ameliorates the LPS-inhibited osteogenic
differentiation in preosteoblast MC3T3-E1 cells. J Toxicol Sci.
41:185–193. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
van der Harg JM, Eggels L, Bangel FN,
Ruigrok SR, Zwart R, Hoozemans JJM, la Fleur SE and Scheper W:
Insulin deficiency results in reversible protein kinase A
activation and tau phosphorylation. Neurobiol Dis. 103:163–173.
2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Liu F, Xiao Y, Ji XL, Zhang KQ and Zou CG:
The cAMP-PKA pathway-mediated fat mobilization is required for cold
tolerance in C. elegans. Sci Rep. 7:6382017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zayed N, Afif H, Chabane N,
Martel-Pelletier J, Pelletier JP and Fahmi H: Prostaglandin D2
inhibits interleukin-1-b-induced matrix metalloproteinase-1 and −13
production by human chondrocytes via its DP1 receptor and cAMP/PKA
pathway. Osteoarthritis Cartilage. 16 Suppl 4:S90–S91. 2008.
View Article : Google Scholar
|
38
|
Zayed N, Afif H, Chabane N, Mfuna-Endam L,
Benderdour M, Martel-Pelletier J, Pelletier JP, Motiani RK, Trebak
M, Duval N and Fahmi H: Inhibition of interleukin-1beta-induced
matrix metalloproteinases 1 and 13 production in human
osteoarthritic chondrocytes by prostaglandin D2. Arthritis Rheum.
58:3530–3540. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yokoyama K, Ikeya M, Umeda K, Oda H,
Nodomi S, Nasu A, Matsumoto Y, Izawa K, Horigome K, Kusaka T, et
al: Enhanced chondrogenesis of induced pluripotent stem cells from
patients with neonatal-onset multisystem inflammatory disease
occurs via the caspase 1-independent cAMP/protein kinase A/CREB
pathway. Arthritis Rheumatol. 67:302–314. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ham O, Lee CY, Song BW, Lee SY, Kim R,
Park JH, Lee J, Seo HH, Lee CY, Chung YA, et al: Upregulation of
miR-23b enhances the autologous therapeutic potential for
degenerative arthritis by targeting PRKACB in synovial
fluid-derived mesenchymal stem cells from patients. Mol Cells.
37:449–456. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ham O, Song BW, Lee SY, Choi E, Cha MJ,
Lee CY, Park JH, Kim IK, Chang W, Lim S, et al: The role of
microRNA-23b in the differentiation of MSC into chondrocyte by
targeting protein kinase A signaling. Biomaterials. 33:4500–4507.
2012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Luo M, Chen J, Li S, Sun H, Zhang Z, Fu Q,
Li J, Wang J, Hughes CE, Caterson B and Cao J: Changes in the
metabolism of chondroitin sulfate glycosaminoglycans in articular
cartilage from patients with Kashin-Beck disease. Osteoarthritis
Cartilage. 22:986–995. 2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Wang W, Guo X, Chen J, Xu P and Lammi MJ:
Morphology and phenotype expression of types I, II, III, and X
collagen and MMP-13 of chondrocytes cultured from articular
cartilage of Kashin-Beck disease. J Rheumatol. 35:696–702.
2008.PubMed/NCBI
|
44
|
Wang X, Ning Y, Zhou B, Yang L, Wang Y and
Guo X: Osteoarthritis associated microRNA expression signature:
Integrated bioinformatics analysis. Mol Med Rep. 2017.
|
45
|
Guay C and Regazzi R: Exosomes as new
players in metabolic organ cross-talk. Diabetes Obes Metab. 19
Suppl 1:S137–S146. 2017. View Article : Google Scholar
|
46
|
Otsuka K, Yamamoto Y, Matsuoka R and
Ochiya T: Maintaining good miRNAs in the body keeps the doctor
away?: Perspectives on the relationship between food-derived
natural products and microRNAs in relation to
exosomes/extracellular vesicles. Mol Nutr Food Res. 62:2018.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Ju S, Mu J, Dokland T, Zhuang X, Wang Q,
Jiang H, Xiang X, Deng ZB, Wang B, Zhang L, et al: Grape
exosome-like nanoparticles induce intestinal stem cells and protect
mice from DSS-induced colitis. Mol Ther. 21:1345–1357. 2013.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Benmoussa A, Lee CH, Laffont B, Savard P,
Laugier J, Boilard E, Gilbert C, Fliss I and Provost P: Commercial
dairy cow milk microRNAs resist digestion under simulated
gastrointestinal tract conditions. J Nutr. 146:2206–2215. 2016.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Aqil F, Munagala R, Jeyabalan J, Agrawal
AK and Gupta R: Exosomes for the enhanced tissue bioavailability
and efficacy of curcumin. AAPS J. 19:1691–1702. 2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Philip A, Ferro VA and Tate RJ:
Determination of the potential bioavailability of plant microRNAs
using a simulated human digestion process. Mol Nutr Food Res.
59:1962–1972. 2015. View Article : Google Scholar : PubMed/NCBI
|
51
|
Yarmarkovich M and Hirschi KD: Digesting
dietary miRNA therapeutics. Oncotarget. 6:13848–13849. 2015.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Yang J, Farmer LM, Agyekum AA and Hirschi
KD: Detection of dietary plant-based small RNAs in animals. Cell
Res. 25:517–520. 2015. View Article : Google Scholar : PubMed/NCBI
|
53
|
Arntz OJ, Pieters BC, Oliveira MC, Broeren
MG, Bennink MB, de Vries M, van Lent PL, Koenders MI, van den Berg
WB, van der Kraan PM and van de Loo FA: Oral administration of
bovine milk derived extracellular vesicles attenuates arthritis in
two mouse models. Mol Nutr Food Res. 59:1701–1712. 2015. View Article : Google Scholar : PubMed/NCBI
|