1
|
Bachert C, Zhang N, van Zele T and Gevaert
P: Chronic rhinosinusitis: From one disease to different
phenotypes. Pediatr Allergy Immunol. 23 Suppl 22:S2–S4. 2012.
View Article : Google Scholar
|
2
|
Bachert C, Mannent L, Naclerio RM, Mullol
J, Ferguson BJ, Gevaert P, Hellings P, Jiao L, Wang L, Evans RR, et
al: Effect of subcutaneous dupilumab on nasal polyp burden in
patients with chronic sinusitis and nasal polyposis: A randomized
clinical trial. JAMA. 315:469–479. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Neubauer PD, Schwam ZG and Manes RP:
Comparison of intranasal fluticasone spray, budesonide atomizer,
and budesonide respules in patients with chronic rhinosinusitis
with polyposis after endoscopic sinus surgery. Int Forum Allergy
Rhinol. 6:233–237. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Johansson L, Akerlund A, Holmberg K, Melén
I and Bende M: Prevalence of nasal polyps in adults: The Skövde
population-based study. Ann Otol Rhinol Laryngol. 112:625–629.
2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
We J, Lee WH, Tan KL, Wee JH, Rhee CS, Lee
CH, Ahn S, Lee JH and Kim JW: Prevalence of nasal polyps and its
risk factors: Korean national health and nutrition examination
survey 2009–2011. Am J Rhinol Allergy. 29:e24–e28. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Feng S, He Q, Fan Y, Mi J, Guo L, Hong H
and Li H: Nasal endoscopic findings and nasal symptoms in patients
with asthma: A clinical study from a rhinological perspective.
Allergol Immunopathol (Madr). 43:42–47. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Fetta M, Tsilis NS, Segas JV, Nikolopoulos
TP and Vlastarakos PV: Functional endoscopic sinus surgery improves
the quality of life in children suffering from chronic
rhinosinusitis with nasal polyps. Int J Pediatr Otorhinolaryngol.
100:145–148. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Weber SAT, Iyomasa RM, Correa CC,
Florentino WNM and Ferrari GF: Nasal polyposis in cystic fibrosis:
Follow-up of children and adolescents for a 3-year period. Braz J
Otorhinolaryngol. 83:677–682. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Veloso-Teles R and Cerejeira R: Endoscopic
sinus surgery for chronic rhinosinusitis with nasal polyps:
Clinical outcome and predictive factors of recurrence. Am J Rhinol
Allergy. 31:56–62. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Park IH, Um JY, Hong SM, Cho JS, Lee SH,
Lee SH and Lee HM: Metformin reduces TGF-β1-induced extracellular
matrix production in nasal polyp-derived fibroblasts. Otolaryngol
Head Neck Surg. 150:148–153. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Piersma B, Bank RA and Boersema M:
Signaling in Fibrosis: TGF-β, WNT, and YAP/TAZ Converge. Front Med
(Lausanne). 2:592015.PubMed/NCBI
|
12
|
Castellone MD and Laukkanen MO: TGF-beta1,
WNT, and SHH signaling in tumor progression and in fibrotic
diseases. Front Biosci (Schol Ed). 9:31–45. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Poniatowski LA, Wojdasiewicz P, Gasik R
and Szukiewicz D: Transforming growth factor Beta family: Insight
into the role of growth factors in regulation of fracture healing
biology and potential clinical applications. Mediators Inflamm.
2015:1378232015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Vadon-Le Goff S, Hulmes DJ and Moali C:
BMP-1/tolloid-like proteinases synchronize matrix assembly with
growth factor activation to promote morphogenesis and tissue
remodeling. Matrix Biol. 44–46:14–23. 2015. View Article : Google Scholar
|
15
|
Richter K, Konzack A, Pihlajaniemi T,
Heljasvaara R and Kietzmann T: Redox-fibrosis: Impact of TGFβ1 on
ROS generators, mediators and functional consequences. Redox Biol.
6:344–352. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lafyatis R: Transforming growth factor
β-at the centre of systemic sclerosis. Nat Rev Rheumatol.
10:706–719. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Huang Y, Liu J, Fan L, Wang F, Yu H, Wei W
and Sun G: miR-663 overexpression induced by endoplasmic reticulum
stress modulates hepatocellular carcinoma cell apoptosis via
transforming growth factor beta 1. Onco Targets Ther. 9:1623–1633.
2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang Z, Zhang H, Zhang P, Dong W and He L:
MicroRNA-663 suppresses cell invasion and migration by targeting
transforming growth factor beta 1 in papillary thyroid carcinoma.
Tumour Biol. 37:7633–7644. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Fokkens W, Lund V and Mullol J: European
Position Paper on Rhinosinusitis and Nasal Polyps Group: EP3OS
2007: European position paper on rhinosinusitis and nasal polyps
2007. A summary for otorhinolaryngologists. Rhinology. 45:97–101.
2007.PubMed/NCBI
|
20
|
Qin JJ, Lu ZY, Jiao ZP, Zhu XJ, Wang YX
and Tang H: Modified TRIzol method for RNA and DNA co-extraction
from blood. Fa Yi Xue Za Zhi. 29:209–211. 2013.(In Chinese).
PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Hulse KE, Stevens WW, Tan BK and Schleimer
RP: Pathogenesis of nasal polyposis. Clin Exp Allergy. 45:328–346.
2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bernstein JM, Gorfien J and Noble B: Role
of allergy in nasal polyposis: A review. Otolaryngol Head Neck
Surg. 113:724–732. 1995. View Article : Google Scholar : PubMed/NCBI
|
24
|
Calus L, Devuyst L, Van Zele T, De Ruyck
N, Derycke L, Bachert C and Gevaert P: The response to nasal
allergen provocation with grass pollen is reduced in patients with
chronic rhinosinusitis with nasal polyposis and grass
sensitization. Clin Exp Allergy. 46:555–563. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Becker S, Rasp J, Eder K, Berghaus A,
Kramer MF and Gröger M: Non-allergic rhinitis with eosinophilia
syndrome is not associated with local production of specific IgE in
nasal mucosa. Eur Arch Otorhinolaryngol. 273:1469–1475. 2016.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Fokkens W, Lund V and Mullol J: European
Position Paper on Rhinosinusitis and Nasal Polyps group: European
position paper on rhinosinusitis and nasal polyps 2007. Rhinol
Suppl. 20:1–136. 2007.PubMed/NCBI
|
27
|
Fundová P, Funda DP, Kovar D, Holy R,
Navara M and Tlaskalová-Hogenová H: Increased expression of
chemokine receptors CCR1 and CCR3 in nasal polyps: Molecular basis
for recruitment of the granulocyte infiltrate. Folia Microbiol
(Praha). 58:219–224. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
De Corso E, Baroni S, Romitelli F, Luca L,
Di Nardo W, Passali GC and Paludetti G: Nasal lavage CCL24 levels
correlate with eosinophils trafficking and symptoms in chronic
sino-nasal eosinophilic inflammation. Rhinology. 49:174–179.
2011.PubMed/NCBI
|
29
|
Pawankar R and Nonaka M: Inflammatory
mechanisms and remodeling in chronic rhinosinusitis and nasal
polyps. Curr Allergy Asthma Rep. 7:202–208. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Pawliczak R, Lewandowska-Polak A and
Kowalski ML: Pathogenesis of nasal polyps: An update. Curr Allergy
Asthma Rep. 5:463–471. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Janda K, Krzanowski M, Dumnicka P,
Kusnierz-Cabala B, Krasniak A and Sulowicz W: Transforming growth
factor beta 1 as a risk factor for cardiovascular diseases in
end-stage renal disease patients treated with peritoneal dialysis.
Clin Lab. 60:1163–1168. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Jin X, Ren S, Macarak E and Rosenbloom J:
Pathobiological mechanisms of peritoneal adhesions: The mesenchymal
transition of rat peritoneal mesothelial cells induced by TGF-β1
and IL-6 requires activation of Erk1/2 and Smad2 linker region
phosphorylation. Matrix Biol. 51:55–64. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Xiao K, Jiao L, Cao S, Song Z, Hu C and
Han X: Whey protein concentrate enhances intestinal integrity and
influences transforming growth factor-β1 and mitogen-activated
protein kinase signalling pathways in piglets after
lipopolysaccharide challenge. Br J Nutr. 115:984–993. 2016.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Cicha I, Yilmaz A, Klein M, Raithel D,
Brigstock DR, Daniel WG, Goppelt-Struebe M and Garlichs CD:
Connective tissue growth factor is overexpressed in complicated
atherosclerotic plaques and induces mononuclear cell chemotaxis in
vitro. Arterioscler Thromb Vasc Biol. 25:1008–1013. 2005.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Chen S, Liu J, Yang M, Lai W, Ye L, Chen
J, Hou X, Ding H, Zhang W, Wu Y, et al: Fn14, a downstream target
of the TGF-β signaling pathway, regulates fibroblast activation.
PLoS One. 10:e01438022015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kanaan RA, Aldwaik M and Al-Hanbali OA:
The role of connective tissue growth factor in skeletal growth and
development. Med Sci Monit. 12:RA277–RA281. 2006.PubMed/NCBI
|
37
|
Aström P, Pirilä E, Lithovius R, Heikkola
H, Korpi JT, Hernández M, Sorsa T and Salo T: Matrix
metalloproteinase-8 regulates transforming growth factor-β1 levels
in mouse tongue wounds and fibroblasts in vitro. Exp Cell Res.
328:217–227. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Park SK, Jin YD, Park YK, Yeon SH, Xu J,
Han RN, Rha KS and Kim YM: IL-25-induced activation of nasal
fibroblast and its association with the remodeling of chronic
rhinosinusitis with nasal polyposis. PLoS One. 12:e01818062017.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Shin JM, Park JH, Kang B, Lee SA, Park IH
and Lee HM: Effect of doxycycline on transforming growth
factor-beta-1-induced matrix metalloproteinase 2 expression,
migration, and collagen contraction in nasal polyp-derived
fibroblasts. Am J Rhinol Allergy. 30:385–390. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Xiao Z, Zhang J, Peng X, Dong Y, Jia L, Li
H and Du J: The Notch γ-secretase inhibitor ameliorates kidney
fibrosis via inhibition of TGF-β/Smad2/3 signaling pathway
activation. Int J Biochem Cell Biol. 55:65–71. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Shi Y, Ye K, Wu H, Sun Y, Shi H and Huo K:
Human SMAD4 is phosphorylated at Thr9 and Ser138 by interacting
with NLK. Mol Cell Biochem. 333:293–298. 2010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lazzarini R, Sorgentoni G, Caffarini M,
Sayeed MA, Olivieri F, Di Primio R and Orciani M: New miRNAs
network in human mesenchymal stem cells derived from skin and
amniotic fluid. Int J Immunopathol Pharmacol. 29:523–528. 2016.
View Article : Google Scholar : PubMed/NCBI
|
43
|
He X, Liu Z, Peng Y and Yu C:
MicroRNA-181c inhibits glioblastoma cell invasion, migration and
mesenchymal transition by targeting TGF-β pathway. Biochem Biophys
Res Commun. 469:1041–1048. 2016. View Article : Google Scholar : PubMed/NCBI
|
44
|
Stolzenburg LR, Wachtel S, Dang H and
Harris A: microRNA-1343 attenuates pathways of fibrosis by
targeting the TGF-β receptors. Biochem J. 473:245–256. 2016.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Shin JM, Park JH, Park IH and Lee HM:
Pirfenidone inhibits transforming growth factor β1-induced
extracellular matrix production in nasal polyp-derived fibroblasts.
Am J Rhinol Allergy. 29:408–413. 2015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Yamin M, Holbrook EH, Gray ST, Busaba NY,
Lovett B and Hamilos DL: Profibrotic transforming growth factor
beta 1 and activin A are increased in nasal polyp tissue and
induced in nasal polyp epithelium by cigarette smoke and Toll-like
receptor 3 ligation. Int Forum Allergy Rhinol. 5:573–582. 2015.
View Article : Google Scholar : PubMed/NCBI
|