1
|
Bortolato B, Carvalho AF, Soczynska JK,
Perini GI and McIntyre RS: The Involvement of TNF-α in cognitive
dysfunction associated with major depressive disorder: An
opportunity for domain specific treatments. Current Neuropharmacol.
13:558–576. 2015. View Article : Google Scholar
|
2
|
Kessler RC: The costs of depression.
Psychiatr Clin North Am. 35:1–14. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Xie X, Shi Y and Zhang J: Structural
network connectivity impairment and depressive symptoms in cerebral
small vessel disease. J Affect Disord. 220:8–14. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Suzuki H, Matsumoto Y, Ota H, Sugimura K,
Takahashi J, Ito K, Miyata S, Furukawa K, Arai H, Fukumoto Y, et
al: Hippocampal blood flow abnormality associated with depressive
symptoms and cognitive impairment in patients with chronic heart
failure. Circ J. 80:1773–1780. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Nabavi SM, Daglia M, Braidy N and Nabavi
SF: Natural products, micronutrients, and nutraceuticals for the
treatment of depression: A short review. Nutr Neurosci. 20:180–194.
2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Li Y, Yan J, Zhu X, Zhu Y, Yao S, Xu Y and
Ju S: Dilated Virchow-Robin spaces in the hippocampus impact
behaviors and effects of anti-depressant treatment in model of
depressed rats. J Affect Disord. 219:17–24. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hu X, Dong Y, Jin X, Zhang C, Zhang T,
Zhao J, Shi J and Li J: The novel and potent anti-depressive action
of triptolide and its influences on hippocampal neuroinflammation
in a rat model of depression comorbidity of chronic pain. Brain
Behav Immun. 64:180–194. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wang J, Liu Y, Li L, Qi Y, Zhang Y, Li L,
Teng L and Wang D: Dopamine and serotonin contribute to
Paecilomyces hepiali against chronic unpredictable mild stress
induced depressive behavior in Sprague Dawley rats. Mol Med Rep.
16:5675–5682. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gupta K, Gupta R, Bhatia MS, Tripathi AK
and Gupta LK: Effect of agomelatine and fluoxetine on HAM-D score,
serum brain-derived neurotrophic factor, and tumor necrosis
factor-α level in patients with major depressive disorder with
severe depression. J Clin Pharmacol. 57:1519–1526. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Choi M, Lee SH, Chang HL and Son H:
Hippocampal VEGF is necessary for antidepressant-like behaviors but
not sufficient for antidepressant-like effects of ketamine in rats.
Biochim Biophys Acta. 1862:1247–1254. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wu CK, Tseng PT, Chen YW, Tu KY and Lin
PY: Significantly higher peripheral fibroblast growth factor-2
levels in patients with major depressive disorder: A preliminary
meta-analysis under MOOSE guidelines. Medicine (Baltimore).
95:e45632016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Roberts E, Cossigny DA and Quan GM: The
role of vascular endothelial growth factor in metastatic prostate
cancer to the skeleton. Prostate Cancer. 2013:418–340. 2013.
View Article : Google Scholar
|
13
|
Lee BH and Kim YK: Increased plasma VEGFA
levels in major depressive or manic episodes in patients with mood
disorders. J Affect Disord. 136:181–184. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Nowacka MM and Obuchowicz E: Vascular
endothelial growth factor (VEGFA) and its role in the central
nervous system: A new element in the neurotrophic hypothesis of
antidepressant drug action. Neuropeptides. 46:1–10. 2012.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Yasuhara T, Shingo T and Date I: The
potential role of vascular endothelial growth factor in the central
nervous system. Rev Neurosci. 15:293–307. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Encinas JM, Vaahtokari A and Enikolopov G:
Fluoxetine targets early progenitor cells in the adult brain. Proc
Natl Acad Sci USA. 103:8233–8238. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kato M and Slack FJ: microRNAs: Small
molecules with big roles-C. elegans to human cancer. Biol Cell.
100:71–81. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hu Z, Jiang Y, Huo X, Yang Y, Davies H,
Botchway BOA and Fang M3: Prospective role of MicroRNAs in
depression. Curr Med Chem. 24:3508–3521. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hansen KF, Karelina K, Sakamoto K, Wayman
GA, Impey S and Obrietan K: miRNA-132: A dynamic regulator of
cognitive capacity. Brain Struct Funct. 218:817–831. 2013.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Hollander JA, Im HI, Amelio AL, et al:
Striatal microRNA controls cocaine intake through CREB signalling.
Nature. 466:197–202. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Cheng HY, Papp JW, Varlamova O, Dziema H,
Russell B, Curfman JP, Nakazawa T, Shimizu K, Okamura H, Impey S
and Obrietan K: microRNA modulation of circadian-clock period and
entrainment. Neuron. 54:813–829. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Acunzo M, Romano G, Palmieri D, Laganá A,
Garofalo M, Balatti V, Drusco A, Chiariello M, Nana-Sinkam P and
Croce CM: Cross-talk between MET and EGFR in non-small cell lung
cancer involves miR-27a and Sprouty2. Proc Natl Acad Sci USA.
110:8573–8578. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang W, Cheng B, Miao L, Mei Y and Wu M:
Mutant p53-R273H gains new function in sustained activation of EGFR
signaling via suppressing miR-27a expression. Cell Death Dis.
4:e5742013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Willner P: Validity, reliability and
utility of the chronic mild stress model of depression: A 10-year
review and evaluation. Psychopharmacology (Berl). 134:319–329.
1997. View Article : Google Scholar : PubMed/NCBI
|
25
|
Iñiguez SD, Warren BL, Parise EM,
Alcantara LF, Schuh B, Maffeo ML, Manojlovic Z and Bolaños-Guzmán
CA: Nicotine exposure during adolescence induces a depression-like
state in adulthood. Neuropsychopharmacology. 34:1609–1624. 2009.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Lin YH, Liu AH, Xu Y, Tie L, Yu HM and Li
XJ: Effect of chronic unpredictable mild stress on brain-pancreas
relative protein in rat brain and pancreas. Behav Brain Res.
165:63–71. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lambert KG: Rising rates of depression in
today's society: Consideration of the roles of effort-based rewards
and enhanced resilience in day-to-day functioning. Neurosci
Biobehav Rev. 30:497–510. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Willner P and Mitchell PJ: The validity of
animal models of predisposition to depression. Behav Pharmacol.
13:169–188. 2002. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wada T, Haigh JJ, Ema M, Hitoshi S,
Chaddah R, Rossant J, Nagy A and van der Kooy D: Vascular
endothelial growth factor directly inhibits primitive neural stem
cell survival but promotes definitive neural stem cell survival. J
Neurosci. 26:6803–6812. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Cao L, Jiao X, Zuzga DS, Liu Y, Fong DM,
Young D and During MJ: VEGFA links hippocampal activity with
neurogenesis, learning and memory. Nat Genet. 36:827–835. 2004.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang WY, Dong JH, Liu X, Wang Y, Ying GX,
Ni ZM and Zhou CF: Vascular endothelial growth factor and its
receptor Flk-1 are expressed in the hippocampus following
entorhinal deafferentation. Neuroscience. 134:1167–1178. 2005.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Harms KM, Li L and Cunningham LA: Murine
neural stem/progenitor cells protect neurons against ischemia by
HIF-1α-regulated VEGFA signaling. PLoS One. 5:e97672010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Inoue K: MicroRNA function in animal
development. Tanpakushitsu Kakusan Koso. 52:197–204. 2007.(In
Japanese). PubMed/NCBI
|
34
|
Williams AE, Moschos SA, Perry MM, Barnes
PJ and Lindsay MA: Maternally imprinted microRNAs are
differentially expressed during mouse and human lung development.
Dev Dyn. 236:572–580. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Li X, Yu Z, Li Y, Liu S, Gao C, Hou X, Yao
R and Cui L: The tumor suppressor miR-124 inhibits cell
proliferation by targeting STAT3 and functions as a prognostic
marker for postoperative NSCLC patients. Int J Oncol. 46:798–808.
2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lv ZC, Fan YS, Chen HB and Zhao DW:
Investigation of microRNA-155 as a serum diagnostic and prognostic
biomarker for colorectal cancer. Tumour Biol. 36:1619–1625. 2015.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Guttilla IK and White BA: Coordinate
regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast
cancer cells. J Biol Chem. 284:23204–23216. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Li X, Mertens-Talcott SU, Zhang S, Kim K,
Ball J and Safe S: MicroRNA-27a indirectly regulates estrogen
receptor {alpha} expression and hormone responsiveness in MCF-7
breast cancer cells. Endocrinology. 151:2462–2473. 2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Mertens-Talcott SU, Chintharlapalli S, Li
X and Safe S: The oncogenic microRNA-27a targets genes that
regulate specificity protein transcription factors and the G2-M
checkpoint in MDA-MB-231 breast cancer cells. Cancer Res.
67:11001–11011. 2007. View Article : Google Scholar : PubMed/NCBI
|
40
|
Yang R, Schlehe B, Hemminki K, Sutter C,
Bugert P, Wappenschmidt B, Volkmann J, Varon R, Weber BH,
Niederacher D, et al: A genetic variant in the pre-miR-27a oncogene
is associated with a reduced familial breast cancer risk. Breast
Cancer Res Treat. 121:693–702. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Saumet A, Vetter G, Bouttier M,
Portales-Casamar E, Wasserman WW, Maurin T, Mari B, Barbry P,
Vallar L, Friederich E, et al: Transcriptional repression of
microRNA genes by PML-RARA increases expression of key cancer
proteins in acute promyelocytic leukemia. Blood. 113:412–421. 2009.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Xi Y, Shalgi R, Fodstad O, Pilpel Y and Ju
J: Differentially regulated micro-RNAs and actively translated
messenger RNA transcripts by tumor suppressor p53 in colon cancer.
Clin Cancer Res. 12:2014–2024. 2006. View Article : Google Scholar : PubMed/NCBI
|
43
|
Volinia S, Calin GA, Liu CG, Ambs S,
Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, et
al: A microRNA expression signature of human solid tumors defines
cancer gene targets. Proc Natl Acad Sci USA. 103:2257–2261. 2006.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Dai Y, Sui W, Lan H, Yan Q, Huang H and
Huang Y: Comprehensive analysis of microRNA expression patterns in
renal biopsies of lupus nephritis patients. Rheumatol Int.
29:749–754. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Kozaki K, Imoto I, Mogi S, Omura K and
Inazawa J: Exploration of tumor-suppressive microRNAs silenced by
DNA hypermethylation in oral cancer. Cancer Res. 68:2094–2105.
2008. View Article : Google Scholar : PubMed/NCBI
|
46
|
Prueitt RL, Yi M, Hudson RS, Wallace TA,
Howe TM, Yfantis HG, Lee DH, Stephens RM, Liu CG, Calin GA, et al:
Expression of microRNAs and protein-coding genes associated with
perineural invasion in prostate cancer. Prostate. 68:1152–1164.
2008. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ji J, Zhang J, Huang G, Qian J, Wang X and
Mei S: Over-expressed microRNA-27a and 27b influence fat
accumulation and cell proliferation during rat hepatic stellate
cell activation. FEBS Lett. 583:759–766. 2009. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kang BY, Park KK, Green DE, Bijli KM,
Searles CD, Sutliff RL and Hart CM: Hypoxia mediates mutual
repression between microRNA-27a and PPARγ in the pulmonary
vasculature. PLoS One. 8:e795032013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Hernandez-Torres F, Aranega AE and Franco
D: Identification of regulatory elements directing
miR-23a-miR-27a-miR-24-2 transcriptional regulation in response to
muscle hypertrophic stimuli. Biochim Biophys Acta. 1839:885–897.
2014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Roncarati R, Viviani Anselmi C, Losi MA,
Papa L, Cavarretta E, Da Costa Martins P, Contaldi C, Saccani Jotti
G, Franzone A, Galastri L, et al: Circulating miR-29a, among other
up-regulated microRNAs, is the only biomarker for both hypertrophy
and fibrosis in patients with hypertrophic cardiomyopathy. J Am
Coll Cardiol. 63:920–927. 2014. View Article : Google Scholar : PubMed/NCBI
|