Extracellular vesicles in mesenchymal stromal cells: A novel therapeutic strategy for stroke (Review)
- Authors:
- Yingchen Li
- Qilai Cheng
- Guoheng Hu
- Tianhao Deng
- Qimei Wang
- Jianda Zhou
- Xinping Su
-
Affiliations: Post‑doctoral Research Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China, College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China, Department of Neurology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410007, P.R. China, Department of Oncology, The Affiliated Hospital of Hunan Institute of Traditional Chinese Medicine, Changsha, Hunan 410006, P.R. China, Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China, Department of Osteology, The Affiliated Hospital of Hunan Institute of Traditional Chinese Medicine, Changsha, Hunan 410006, P.R. China - Published online on: March 22, 2018 https://doi.org/10.3892/etm.2018.5993
- Pages: 4067-4079
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Moskowitz MA, Lo EH and Iadecola C: The science of stroke: Mechanisms in search of treatments. Neuron. 67:181–198. 2010. View Article : Google Scholar : PubMed/NCBI | |
Demaerschalk BM, Kleindorfer DO, Adeoye OM, Demchuk AM, Fugate JE, Grotta JC, Khalessi AA, Levy EI, Palesch YY, Prabhakaran S, et al: Scientific rationale for the inclusion and exclusion criteria for intravenous alteplase in acute ischemic stroke: A statement for healthcare professionals from the american heart association/american stroke association. Stroke. 47:581–641. 2016. View Article : Google Scholar : PubMed/NCBI | |
Grunwald IQ, Wakhloo AK, Walter S, Molyneux AJ, Byrne JV, Nagel S, Kühn AL, Papadakis M, Fassbender K, Balami JS, et al: Endovascular stroke treatment today. AJNR Am J Neuroradiol. 32:238–243. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tu J, Yang F, Wan J, Liu Y, Zhang J, Wu B, Liu Y, Zeng S and Wang L: Light-controlled astrocytes promote human mesenchymal stem cells toward neuronal differentiation and improve the neurological deficit in stroke rats. Glia. 62:106–121. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wei ZZ, Gu X, Ferdinand A, Lee JH, Ji X, Ji XM, Yu SP and Wei L: Intranasal delivery of bone marrow mesenchymal stem cells improved neurovascular regeneration and rescued neuropsychiatric deficits after neonatal stroke in rats. Cell Transplant. 24:391–402. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang ZG and Chopp M: Exosomes in stroke pathogenesis and therapy. J Clin Invest. 126:1190–1197. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lopatina T, Bruno S, Tetta C, Kalinina N, Porta M and Camussi G: Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. Cell Commun Signal. 12:262014. View Article : Google Scholar : PubMed/NCBI | |
Tan X, Gong YZ, Wu P, Liao DF and Zheng XL: Mesenchymal stem cell-derived microparticles: A promising therapeutic strategy. Int J Mol Sci. 15:14348–14363. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Hu G and Cheng Q: Implantation of human umbilical cord mesenchymal stem cells for ischemic stroke: Perspectives and challenges. Front Med. 9:20–29. 2015. View Article : Google Scholar : PubMed/NCBI | |
Marquez-Curtis LA, Janowska-Wieczorek A, McGann LE and Elliott JA: Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects. Cryobiology. 71:181–197. 2015. View Article : Google Scholar : PubMed/NCBI | |
Olson AL and McNiece IK: Novel clinical uses for cord blood derived mesenchymal stromal cells. Cytotherapy. 17:796–802. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science. 284:143–147. 1999. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, et al: Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 418:41–49. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hao L, Zou Z, Tian H, Zhang Y, Zhou H and Liu L: Stem cell-based therapies for ischemic stroke. Biomed Res Int. 2014:4687482014. View Article : Google Scholar : PubMed/NCBI | |
Bernardo ME and Fibbe WE: Mesenchymal stromal cells: Sensors and switchers of inflammation. Cell Stem Cell. 13:392–402. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gornostaeva A, Andreeva E and Buravkova L: Factors governing the immunosuppressive effects of multipotent mesenchymal stromal cells in vitro. Cytotechnology. 68:565–577. 2016. View Article : Google Scholar : PubMed/NCBI | |
Khubutiya MS, Vagabov AV, Temnov AA and Sklifas AN: Paracrine mechanisms of proliferative, anti-apoptotic and anti-inflammatory effects of mesenchymal stromal cells in models of acute organ injury. Cytotherapy. 16:579–585. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bang OY, Lee JS, Lee PH and Lee G: Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol. 57:874–882. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH and Bang OY: STARTING collaborators: A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 28:1099–1106. 2010. View Article : Google Scholar : PubMed/NCBI | |
Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, Waxman SG and Kocsis JD: Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain. 134:1790–1807. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bhasin A, Srivastava MV, Kumaran SS, Mohanty S, Bhatia R, Bose S, Gaikwad S, Garg A and Airan B: Autologous mesenchymal stem cells in chronic stroke. Cerebrovasc Dis Extra. 1:93–104. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Zhu W, Zhu J, Wu L, Xu G and Liu X: Feasibility of delivering mesenchymal stem cells via catheter to the proximal end of the lesion artery in patients with stroke in the territory of the middle cerebral artery. Cell Transplant. 22:2291–2298. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bhasin A, Srivastava MV, Mohanty S, Bhatia R, Kumaran SS and Bose S: Stem cell therapy: A clinical trial of stroke. Clin Neurol Neurosurg. 115:1003–1008. 2013. View Article : Google Scholar : PubMed/NCBI | |
Steinberg GK, Kondziolka D, Wechsler LR, Lunsford LD, Coburn ML, Billigen JB, Kim AS, Johnson JN, Bates D, King B, et al: Clinical outcomes of transplanted modified bone marrow-derived mesenchymal stem cells in stroke: A phase 1/2a study. Stroke. 47:1817–1824. 2016. View Article : Google Scholar : PubMed/NCBI | |
Toma C, Wagner WR, Bowry S, Schwartz A and Villanueva F: Fate of culture-expanded mesenchymal stem cells in the microvasculature: In vivo observations of cell kinetics. Circ Res. 104:398–402. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lin YC, Ko TL, Shih YH, Lin MY, Fu TW, Hsiao HS, Hsu JY and Fu YS: Human umbilical mesenchymal stem cells promote recovery after ischemic stroke. Stroke. 42:2045–2053. 2011. View Article : Google Scholar : PubMed/NCBI | |
Vu Q, Xie K, Eckert M, Zhao W and Cramer SC: Meta-analysis of preclinical studies of mesenchymal stromal cells for ischemic stroke. Neurology. 82:1277–1286. 2014. View Article : Google Scholar : PubMed/NCBI | |
Caplan AI and Correa D: The MSC: An injury drugstore. Cell Stem Cell. 9:11–15. 2011. View Article : Google Scholar : PubMed/NCBI | |
Basso M and Bonetto V: Extracellular vesicles and a novel form of communication in the brain. Front Neurosci. 10:1272016. View Article : Google Scholar : PubMed/NCBI | |
Yu B, Zhang X and Li X: Exosomes derived from mesenchymal stem cells. Int J Mol Sci. 15:4142–4157. 2014. View Article : Google Scholar : PubMed/NCBI | |
Doeppner TR, Herz J, Görgens A, Schlechter J, Ludwig AK, Radtke S, de Miroschedji K, Horn PA, Giebel B and Hermann DM: Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Transl Med. 4:1131–1143. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xin H, Li Y and Chopp M: Exosomes/miRNAs as mediating cell-based therapy of stroke. Front Cell Neurosci. 8:3772014. View Article : Google Scholar : PubMed/NCBI | |
Couzin J: Cell biology: The ins and outs of exosomes. Science. 308:1862–1863. 2005. View Article : Google Scholar : PubMed/NCBI | |
van der Pol E, Boing AN, Harrison P, Sturk A and Nieuwland R: Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 64:676–705. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, et al: Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 4:270662015. View Article : Google Scholar : PubMed/NCBI | |
Raposo G and Stoorvogel W: Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol. 200:373–383. 2013. View Article : Google Scholar : PubMed/NCBI | |
Katakowski M, Buller B, Zheng X, Lu Y, Rogers T, Osobamiro O, Shu W, Jiang F and Chopp M: Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett. 335:201–204. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang HG and Grizzle WE: Exosomes: A novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions. Am J Pathol. 184:28–41. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fais S, O'Driscoll L, Borras FE, Buzas E, Camussi G, Cappello F, Carvalho J, da Silva Cordeiro A, Del Portillo H, El Andaloussi S, et al: Evidence-based clinical use of nanoscale extracellular vesicles in nanomedicine. ACS Nano. 10:3886–3899. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ratajczak MZ: The emerging role of microvesicles in cellular therapies for organ/tissue regeneration. Nephrol Dial Transplant. 26:1453–1456. 2011. View Article : Google Scholar : PubMed/NCBI | |
Reiner AT, Witwer KW, van Balkom BWM, de Beer J, Brodie C, Corteling RL, Gabrielsson S, Gimona M, Ibrahim AG, de Kleijn D, et al: Concise review: Developing best-practice models for the therapeutic use of extracellular vesicles. Stem Cells Transl Med. 6:1730–1739. 2017. View Article : Google Scholar : PubMed/NCBI | |
Antonyak MA and Cerione RA: Emerging picture of the distinct traits and functions of microvesicles and exosomes. Proc Natl Acad Sci USA. 112:3589–3590. 2015.PubMed/NCBI | |
Biancone L, Bruno S, Deregibus MC, Tetta C and Camussi G: Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol Dial Transplant. 27:3037–3042. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lai CP and Breakefield XO: Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol. 3:2282012. View Article : Google Scholar : PubMed/NCBI | |
Konala VB, Mamidi MK, Bhonde R, Das AK, Pochampally R and Pal R: The current landscape of the mesenchymal stromal cell secretome: A new paradigm for cell-free regeneration. Cytotherapy. 18:13–24. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gyorgy B, Hung ME, Breakefield XO and Leonard JN: Therapeutic applications of extracellular vesicles: Clinical promise and open questions. Annu Rev Pharmacol Toxicol. 55:439–464. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kanninen KM, Bister N, Koistinaho J and Malm T: Exosomes as new diagnostic tools in CNS diseases. Biochim Biophys Acta. 1862:403–410. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ban LA, Shackel NA and McLennan SV: Extracellular vesicles: A new frontier in biomarker discovery for non-alcoholic fatty liver disease. Int J Mol Sci. 17:3762016. View Article : Google Scholar : PubMed/NCBI | |
Lai FW, Lichty BD and Bowdish DM: Microvesicles: Ubiquitous contributors to infection and immunity. J Leukoc Biol. 97:237–245. 2015. View Article : Google Scholar : PubMed/NCBI | |
Witwer KW, Buzàs EI, Bemis LT, Bora A, Lässer C, Lötvall J, Hoen Nolte-'t EN, Piper MG, Sivaraman S, Skog J, et al: Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2:203602013. View Article : Google Scholar | |
Zlotogorski-Hurvitz A, Dayan D, Chaushu G, Korvala J, Salo T, Sormunen R and Vered M: Human saliva-derived exosomes: Comparing methods of isolation. J Histochem Cytochem. 63:181–189. 2015. View Article : Google Scholar : PubMed/NCBI | |
Van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, Vandesompele J, Bracke M, De Wever O and Hendrix A: The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles. 3:248582014. View Article : Google Scholar | |
Sàenz-Cuesta M, Osorio-Querejeta I and Otaegui D: Extracellular vesicles in multiple sclerosis: What are they telling us? Front Cell Neurosci. 8:1002014. View Article : Google Scholar : PubMed/NCBI | |
György B, Módos K, Pàllinger E, Pálóczi K, Pásztói M, Misják P, Deli MA, Sipos A, Szalai A, Voszka I, et al: Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood. 117:e39–e48. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shin H, Han C, Labuz JM, Kim J, Kim J, Cho S, Gho YS, Takayama S and Park J: High-yield isolation of extracellular vesicles using aqueous two-phase system. Sci Rep. 5:131032015. View Article : Google Scholar : PubMed/NCBI | |
Lacroix R, Robert S, Poncelet P and Dignat-George F: Overcoming limitations of microparticle measurement by flow cytometry. Semin Thromb Hemost. 36:807–818. 2010. View Article : Google Scholar : PubMed/NCBI | |
van der Vlist EJ, Hoen Nolte-'t EN, Stoorvogel W, Arkesteijn GJ and Wauben MH: Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protoc. 7:1311–1326. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sokolova V, Ludwig AK, Hornung S, Rotan O, Horn PA, Epple M and Giebel B: Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces. 87:146–150. 2011. View Article : Google Scholar : PubMed/NCBI | |
Szatanek R, Baj-Krzyworzeka M, Zimoch J, Lekka M, Siedlar M and Baran J: The methods of choice for extracellular vesicles (EVs) characterization. Int J Mol Sci. 18:pii: E1153. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mokarizadeh A, Delirezh N, Morshedi A, Mosayebi G, Farshid AA and Mardani K: Microvesicles derived from mesenchymal stem cells: Potent organelles for induction of tolerogenic signaling. Immunol Lett. 147:47–54. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen TS, Lai RC, Lee MM, Choo AB, Lee CN and Lim SK: Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res. 38:215–224. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhong Y, Ma X, Xiao X, Cheng C, Chen Y, Iwuchukwu I, Gaines KJ, Zhao B, Liu S, et al: Analyses of endothelial cells and endothelial progenitor cells released Microvesicles by using microbead and Q-dot based nanoparticle tracking analysis. Sci Rep. 6:246792016. View Article : Google Scholar : PubMed/NCBI | |
Théry C, Amigorena S, Raposo G and Clayton A: Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. Chapter 3: Unit 3.22. 2006. View Article : Google Scholar | |
Jayachandran M, Miller VM, Heit JA and Owen WG: Methodology for isolation, identification and characterization of microvesicles in peripheral blood. J Immunol Methods. 375:207–214. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Liu Z, Xin H and Chopp M: The role of astrocytes in mediating exogenous cell-based restorative therapy for stroke. Glia. 62:1–16. 2014. View Article : Google Scholar : PubMed/NCBI | |
Eirin A, Riester SM, Zhu XY, Tang H, Evans JM, O'Brien D, van Wijnen AJ and Lerman LO: MicroRNA and mRNA cargo of extracellular vesicles from porcine adipose tissue-derived mesenchymal stem cells. Gene. 551:55–64. 2014. View Article : Google Scholar : PubMed/NCBI | |
Phinney DG, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix CM, Stolz DB, Watkins SC, Di YP, Leikauf GD, et al: Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 6:84722015. View Article : Google Scholar : PubMed/NCBI | |
Fleury A, Martinez MC and Le Lay S: Extracellular vesicles as therapeutic tools in cardiovascular diseases. Front Immunol. 5:3702014. View Article : Google Scholar : PubMed/NCBI | |
Taylor DD and Gercel-Taylor C: Exosomes/microvesicles: Mediators of cancer-associated immunosuppressive microenvironments. Semin Immunopathol. 33:441–454. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kanada M, Bachmann MH, Hardy JW, Frimannson DO, Bronsart L, Wang A, Sylvester MD, Schmidt TL, Kaspar RL, Butte MJ, et al: Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl Acad Sci USA. 112:E1433–E1442. 2015.PubMed/NCBI | |
Turchinovich A and Cho WC: The origin, function and diagnostic potential of extracellular microRNA in human body fluids. Front Genet. 5:302014. View Article : Google Scholar : PubMed/NCBI | |
Liu RT, Wang SW and Liu J: Exosomes: The novel vehicles for intercellular communication. Prog Biochem Biophys. 40:719–727. 2013. | |
György B, Szabó TG, Pàsztói M, Pál Z, Misják P, Aradi B, László V, Pállinger E, Pap E, Kittel A, et al: Membrane vesicles, current state-of-the-art: Emerging role of extracellular vesicles. Cell Mol Life Sci. 68:2667–2688. 2011. View Article : Google Scholar : PubMed/NCBI | |
Thery C, Ostrowski M and Segura E: Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 9:581–593. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sheldon H, Heikamp E, Turley H, Dragovic R, Thomas P, Oon CE, Leek R, Edelmann M, Kessler B, Sainson RC, et al: New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood. 116:2385–2394. 2010. View Article : Google Scholar : PubMed/NCBI | |
Janowska-Wieczorek A, Majka M, Kijowski J, Baj-Krzyworzeka M, Reca R, Turner AR, Ratajczak J, Emerson SG, Kowalska MA and Ratajczak MZ: Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment. Blood. 98:3143–3149. 2001. View Article : Google Scholar : PubMed/NCBI | |
Mause SF and Weber C: Microparticles: Protagonists of a novel communication network for intercellular information exchange. Circ Res. 107:1047–1057. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rozmyslowicz T, Majka M, Kijowski J, Murphy SL, Conover DO, Poncz M, Ratajczak J, Gaulton GN and Ratajczak MZ: Platelet- and megakaryocyte-derived microparticles transfer CXCR4 receptor to CXCR4-null cells and make them susceptible to infection by X4-HIV. AIDS. 17:33–42. 2003. View Article : Google Scholar : PubMed/NCBI | |
Desrochers LM, Bordeleau F, Reinhart-King CA, Cerione RA and Antonyak MA: Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation. Nat Commun. 7:119582016. View Article : Google Scholar : PubMed/NCBI | |
Yong PJ, Koh CH and Shim WS: Endothelial microparticles: Missing link in endothelial dysfunction? Eur J Prev Cardiol. 20:496–512. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Huang W, Zhang R, Wu J, Li L and Tang Y: Proteomic analysis of TNF-α-activated endothelial cells and endothelial microparticles. Mol Med Rep. 7:318–326. 2013. View Article : Google Scholar : PubMed/NCBI | |
de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma G, Schiffelers RM, Gucek M and van Balkom BW: Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles. 1:183962012. View Article : Google Scholar | |
Mitra S, Wewers MD and Sarkar A: Mononuclear phagocyte-derived microparticulate caspase-1 induces pulmonary vascular endothelial cell injury. PLoS One. 10:e01456072015. View Article : Google Scholar : PubMed/NCBI | |
Katsman D, Stackpole EJ, Domin DR and Farber DB: Embryonic stem cell-derived microvesicles induce gene expression changes in Muller cells of the retina. PLoS One. 7:e504172012. View Article : Google Scholar : PubMed/NCBI | |
Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P and Ratajczak MZ: Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: Evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 20:847–856. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yeo RW, Lai RC, Zhang B, Tan SS, Yin Y, Teh BJ and Lim SK: Mesenchymal stem cell: An efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev. 65:336–341. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lai RC, Tan SS, Teh BJ, Sze SK, Arslan F, de Kleijn DP, Choo A and Lim SK: Proteolytic potential of the MSC exosome proteome: Implications for an exosome-mediated delivery of therapeutic proteasome. Int J Proteomics. 2012:9719072012. View Article : Google Scholar : PubMed/NCBI | |
Collino F, Bruno S, Incarnato D, Dettori D, Neri F, Provero P, Pomatto M, Oliviero S, Tetta C, Quesenberry PJ and Camussi G: AKI recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying MicroRNAs. J Am Soc Nephrol. 26:2349–2360. 2015. View Article : Google Scholar : PubMed/NCBI | |
Koniusz S, Andrzejewska A, Muraca M, Srivastava AK, Janowski M and Lukomska B: Extracellular vesicles in physiology, pathology, and therapy of the immune and central nervous system, with focus on extracellular vesicles derived from mesenchymal stem cells as therapeutic tools. Front Cell Neurosci. 10:1092016. View Article : Google Scholar : PubMed/NCBI | |
Tomasoni S, Longaretti L, Rota C, Morigi M, Conti S, Gotti E, Capelli C, Introna M, Remuzzi G and Benigni A: Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev. 22:772–780. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dooner MS, Aliotta JM, Pimentel J, Dooner GJ, Abedi M, Colvin G, Liu Q, Weier HU, Johnson KW and Quesenberry PJ: Conversion potential of marrow cells into lung cells fluctuates with cytokine-induced cell cycle. Stem Cells Dev. 17:207–219. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pegtel DM, Peferoen L and Amor S: Extracellular vesicles as modulators of cell-to-cell communication in the healthy and diseased brain. Philos Trans R Soc Lond B Biol Sci. 369:pii: 20130516. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lozito TP and Tuan RS: Endothelial and cancer cells interact with mesenchymal stem cells via both microparticles and secreted factors. J Cell Mol Med. 18:2372–2384. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xin H, Li Y, Liu Z, Wang X, Shang X, Cui Y, Zhang ZG and Chopp M: MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells. 31:2737–2746. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hao P, Liang Z, Piao H, Ji X, Wang Y, Liu Y, Liu R and Liu J: Conditioned medium of human adipose-derived mesenchymal stem cells mediates protection in neurons following glutamate excitotoxicity by regulating energy metabolism and GAP-43 expression. Metab Brain Dis. 29:193–205. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lin SS, Zhu B, Guo ZK, Huang GZ, Wang Z, Chen J, Wei XJ and Li Q: Bone marrow mesenchymal stem cell-derived microvesicles protect rat pheochromocytoma PC12 cells from glutamate-induced injury via a PI3K/Akt dependent pathway. Neurochem Res. 39:922–931. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, Shang X, Zhang ZG and Chopp M: Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells. 30:1556–1564. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG and Chopp M: Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab. 33:1711–1715. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mousavinejad M, Andrews PW and Shoraki EK: Current biosafety considerations in stem cell therapy. Cell J. 18:281–287. 2016.PubMed/NCBI | |
Wong RS: Mesenchymal stem cells: Angels or demons? J Biomed Biotechnol. 2011:4595102011. View Article : Google Scholar : PubMed/NCBI | |
Jeong JO, Han JW, Kim JM, Cho HJ, Park C, Lee N, Kim DW and Yoon YS: Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circ Res. 108:1340–1347. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shao H, Chung J, Balaj L, Charest A, Bigner DD, Carter BS, Hochberg FH, Breakefield XO, Weissleder R and Lee H: Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med. 18:1835–1840. 2012. View Article : Google Scholar : PubMed/NCBI | |
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S and Wood MJ: Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 29:341–345. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, Chaput N, Chatterjee D, Court FA, Del Portillo HA, et al: Applying extracellular vesicles based therapeutics in clinical trials-an ISEV position paper. J Extracell Vesicles. 4:300872015. View Article : Google Scholar : PubMed/NCBI | |
Chen TS, Arslan F, Yin Y, Tan SS, Lai RC, Choo AB, Padmanabhan J, Lee CN, de Kleijn DP and Lim SK: Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J Transl Med. 9:472011. View Article : Google Scholar : PubMed/NCBI | |
Salido-Guadarrama I, Romero-Cordoba S, Peralta-Zaragoza O, Hidalgo-Miranda A and Rodríguez-Dorantes M: MicroRNAs transported by exosomes in body fluids as mediators of intercellular communication in cancer. Onco Targets Ther. 7:1327–1338. 2014.PubMed/NCBI | |
Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G and Amigorena S: Eradication of established murine tumors using a novel cell-free vaccine: Dendritic cell-derived exosomes. Nat Med. 4:594–600. 1998. View Article : Google Scholar : PubMed/NCBI | |
Escudier B, Dorval T, Chaput N, André F, Caby MP, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S, et al: Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: Results of thefirst phase I clinical trial. J Transl Med. 3:102005. View Article : Google Scholar : PubMed/NCBI | |
Otero-Ortega L, Laso-García F, Gómez-de Frutos MD, Rodríguez-Frutos B, Pascual-Guerra J, Fuentes B, Díez-Tejedor E and Gutiérrez-Fernández M: White matter repair after extracellular vesicles administration in an experimental animal model of subcortical stroke. Sci Rep. 7:444332017. View Article : Google Scholar : PubMed/NCBI | |
Xin H, Wang F, Li Y, Lu QE, Cheung WL, Zhang Y, Zhang ZG and Chopp M: Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from MicroRNA 133b-overexpressing multipotent mesenchymal stromal cells. Cell Transplant. 26:243–257. 2017. View Article : Google Scholar : PubMed/NCBI |