1
|
Cutts J, Nikkhah M and Brafman DA:
Biomaterial approaches for stem cell-based myocardial tissue
engineering. Biomark Insights. 10 Suppl 1:S77–S90. 2015.
|
2
|
Jiang Q, Song P, Wang E, Li J, Hu S and
Zhang H: Remote ischemic postconditioning enhances cell retention
in the myocardium after intravenous administration of bone marrow
mesenchymal stromal cells. J Mol Cell Cardiol. 56:1–7. 2013.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Chen CH, Sereti KI, Wu BM and Ardehali R:
Translational aspects of cardiac cell therapy. J Cell Mol Med.
19:1757–1772. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Williams AR and Hare JM: Mesenchymal stem
cells: Biology, patho-physiology, translational findings, and
therapeutic implications for cardiac disease. Circ Res.
109:923–940. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Stoltz JF, de Isla N, Li YP, Bensoussan D,
Zhang L, Huselstein C, Chen Y, Decot V, Magdalou J, Li N, et al:
Stem cells and regenerative medicine: Myth or reality of the 21th
century. Stem Cells Int. 2015:7347312015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Matar AA and Chong JJ: Stem cell therapy
for cardiac dysfunction. Springerplus. 3:4402014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Shen H, Wang Y, Zhang Z, Yang J, Hu S and
Shen Z: Mesenchymal stem cells for cardiac regenerative therapy:
Optimization of cell differentiation strategy. Stem Cells Int.
2015:5247562015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Galli D, Vitale M and Vaccarezza M: Bone
marrow-derived mesenchymal cell differentiation toward myogenic
lineages: Facts and perspectives. Biomed Res Int. 2014:7626952014.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Gao Q, Guo M, Jiang X, Hu X, Wang Y and
Fan Y: A cocktail method for promoting cardiomyocyte
differentiation from bone marrow-derived mesenchymal stem cells.
Stem Cells Int. 2014:1620242014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kennard S, Liu H and Lilly B: Transforming
growth factor-beta (TGF-1) down-regulates Notch3 in fibroblasts to
promote smooth muscle gene expression. J Biol Chem. 283:1324–1333.
2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lv Y, Wang HP, Liu B, Wu ZG, Huo YL and
Gao CW: TGF-β1 induced bone marrow mesenchymal stem cells
differentiate into cardiomyocyte-like cells. Acta Anatomica Sinica.
44:49–54. 2013.
|
12
|
Lv Y, Wang HP and Wang HY, Huo YL and Wang
HY: Basic fibroblast growth factor and salvianolic acid B induce
bone marrowmesenchymal stem cells differentiating into
cardiomyocyte-like cells in vitro. Chin J Anatomy. 36:1026–1029.
2013.
|
13
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Wen Z, Jie T, Deqin J, Lei Z, Jing Z and
Yuan C: Temporal expression of regulative genes in the process of
bone marrow mesenchymal stem cells differentiating into
cardiomyocytes in vitro. Zhonghua xin xue Guan Bing za zhi.
32:1004–1008. 2004.
|
15
|
Kobolak J, Dinnyes A, Memic A,
Khademhosseini A and Mobasheri A: Mesenchymal stem cells:
Identification, phenotypic characterization, biological properties
and potential for regenerative medicine through biomaterial
micro-engineering of their niche. Methods. 99:62–68. 2016.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Nayan M, Paul A, Chen G, Chiu RC, Prakash
S and Shum-Tim D: Superior therapeutic potential of young bone
marrow mesenchymal stem cells by direct intramyocardial delivery in
aged recipients with acute myocardial infarction: In vitro and in
vivo investigation. J Tissue Eng. 2011:7412132011.PubMed/NCBI
|
17
|
Nartprayut K, U-Pratya Y, Kheolamai P,
Manochantr S, Chayosumrit M, Issaragrisil S and Supokawej A:
Cardiomyocyte differentiation of perinatally-derived mesenchymal
stem cells. Mol Med Rep. 7:1465–1469. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Li M and Ikehara S: Bone-marrow-derived
mesenchymal stem cells for organ repair. Stem Cells Int.
2013:1326422013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu Y, Song J, Liu W, Wan Y, Chen X and Hu
C: Growth and differentiation of rat bone marrow stromal cells:
Does 5-azacytidine trigger their cardiomyogenic differentiation?
Cardiovasc Res. 58:460–468. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Bae S, Shim SH, Park CW, Son HK, Lee HJ,
Son JY, Jeon C and Kim H: Combined omics analysis identifies
transmembrane 4 L6 family member 1 as a surface protein marker
specific to human mesenchymal stem cells. Stem Cells Dev.
20:197–203. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tomita S, Li RK, Weisel R, Mickle DA, Kim
EJ, Sakai T and Jia ZQ: Autologous transplantation of bone marrow
cells improves damaged heart function. Circulation. 100 19
Suppl:II247–II256. 1999. View Article : Google Scholar : PubMed/NCBI
|
22
|
Breccia M, Loglisci G, Salaroli A, Serrao
A, Petrucci L, Mancini M and Alimena G: 5-azacitidine efficacy and
safety in patients aged >65 years with myelodysplastic syndromes
outside clinical trials. Leuk Lymphoma. 53:1558–1560. 2012.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Najar RA, Ghaderian SM and Panah AS:
Association of transforming growth factor-β1 gene polymorphisms
with genetic susceptibility to acute myocardial infarction. Am J
Med Sci. 342:365–370. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wu J, Niu J, Li X, Wang X, Guo Z and Zhang
F: TGF-β1 induces senescence of bone marrow mesenchymal stem cells
via increase of mitochondrial ROS production. BMC Dev Biol.
14:212014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Godier-Furnémont AF, Tekabe Y, Kollaros M,
Eng G, Morales A, Vunjak-Novakovic G and Johnson LL: Noninvasive
imaging of myocyte apoptosis following application of a stem
cell-engineered delivery platform to acutely infarcted myocardium.
J Nucl Med. 54:977–83. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Li TS, Hayashi M, Ito H, Furutani A,
Murata T, Matsuzaki M and Hamano K: Regeneration of infarcted
myocardium by intramyocardial implantation of ex vivo transforming
growth factor-beta-preprogrammed bone marrow stem cells.
Circulation. 111:2438–2445. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Huang CY, Chen SY, Fu RH, Huang YC, Chen
SY, Shyu WC, Lin SZ and Liu SP: Differentiation of embryonic stem
cells into cardiomyocytes used to investigate the cardioprotective
effect of salvianolic acid B through BNIP3 involved pathway. Cell
Transplant. 24:561–571. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lin C, Liu Z, Lu Y, Yao Y, Zhang Y, Ma Z,
Kuai M, Sun X, Sun S, Jing Y, et al: Cardioprotective effect of
Salvianolic acid B on acute myocardial infarction by promoting
autophagy and neovascularization and inhibiting apoptosis. J Pharm
Pharmacol. 68:941–952. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Faustino RS, Behfar A, Perez-Terzic C and
Terzic A: Genomic chart guiding embryonic stem cell cardiopoiesis.
Genome Biol. 9:R62008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Riazi AM, Takeuchi JK, Hornberger LK,
Zaidi SH, Amini F, Coles J, Bruneau BG and Van Arsdell GS: NKX2-5
regulates the expression of beta-catenin and GATA4 in ventricular
myocytes. PLoS One. 4:e56982009. View Article : Google Scholar : PubMed/NCBI
|