1
|
Liu Y, Yang MH, Wang XB, Li TX and Kong
LY: Caryophyllene sesquiterpenoids from the endophytic fungus,
Pestalotiopsis sp. Fitoterapia. 109:119–124. 2016.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Deyrup ST, Swenson DC, Gloer JB and
Wicklow DT: Caryophyllene sesquiterpenoids from a fungicolous
isolate of Pestalotiopsis disseminata. J Nat Prod.
69:608–611. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hwang IH, Swenson DC, Gloer JB and Wicklow
DT: Disseminins and spiciferone analogues: Polyketide-derived
metabolites from a fungicolous isolate of Pestalotiopsis
disseminate. J Nat Prod. 79:523–530. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Yang XL, Awakawa T, Wakimoto T and Abe I:
Induced production of novel prenyldepside and coumarins in
endophytic fungi Pestalotiopsis acaciae. Tetrahedron Lett.
54:5814–5817. 2013. View Article : Google Scholar
|
5
|
Klaiklay S, Rukachaisirikul V, Tadpetch K,
Sukpondma Y, Phongpaichit S, Buatong J and Sakayaroj J: Chlorinated
chromone and diphenyl ether derivatives from the mangrove-derived
fungus Pestalotiopsis sp. PSU-MA69. Tetrahedron.
68:2299–2305. 2012. View Article : Google Scholar
|
6
|
Li J, Li L, Si Y, Jiang X, Guo L and Che
Y: Virgatolides A-C, benzannulated spiroketals from the plant
endophytic funfus Pestalotiopsis virgatula. Org Lett.
13:2670–2673. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Xu J, Kjer J, Sendker J, Wray V, Guan H,
Edrada R, Lin W, Wu J and Proksch P: Chromones from the endophytic
fungus Pestalotiopsis sp. isolated from the chinese mangrove
plant Rhizophora mucronata. J Nat Prod. 72:662–665. 2009.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Harper JK, Arif AM, Ford EJ, Strobel GA,
Porco JA Jr, Tomer DP, Oneill KL, Heider WM and Grant DM: Pestacin:
A 1,3-dihydro isobenzofuran from Pestaliopsis microspora possessing
antioxidant and antimycotic activities. Tetrahedron. 59:2471–2474.
2003. View Article : Google Scholar
|
9
|
Akone SH, Amrani ME, Lin W, Lai D and
Proksch P: Cytosporins F-K, new epoxyquinols from the endophytic
fungus Pestalotiopsis theae. Tetrahedron Lett. 54:6751–6754.
2013. View Article : Google Scholar
|
10
|
Xu J, Aly AH, Wray V and Proksch P:
Polyketide derivatives of endophytic fungus Pestalotiopsis
sp. isolated from the Chinese mangrove plant Rhizophora
mucronata. Tetrahedron Lett. 52:21–25. 2010. View Article : Google Scholar
|
11
|
Strobel G, Yang X, Sears J, Kramer R,
Sidhu RS and Hess WM: Taxol from Pestalotiopsis microspora,
an endophytic fungus of Taxus wallachiana. Microbiology.
142:435–440. 1996. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kumaran RS, Kim HJ and Hur BK:
Taxol-producing [corrected] fungal endophyte, Pestalotiopsis
species isolated from Taxus cuspidata. J Biosci Bioeng.
110:541–546. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Tan RX and Zou WX: Endophytes: A rich
source of functional metabolites. Nat Prod Rep. 18:448–459. 2001.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Ding G, Liu S, Guo L, Zhou Y and Che Y:
Antifungal metabolites from the plant endophytic fungus
Pestalotiopsis foedan. J Nat Prod. 71:615–618. 2008.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Wei MY, Li D, Shao CL, Deng DS and Wang
CY: (±)-Pestalachloride D, an antibacterial racemate of chlorinated
benzophenone derivative from a soft coral-derived fungus
Pestalotiopsis sp. Mar Drugs. 11:1050–1060. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xu D, Zhang BY and Yang XL: Antifungal
monoterpene derivatives from the plant endophytic fungus
Pestalotiopsis foedan. Chem Biodivers. 13:1422–1425. 2016.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Jia YL, Wei MY, Chen HY, Guan FF, Wang CY
and Shao CL: (+)- and (−)-pestaloxazine A, a pair of antiviral
enantiomeric alkaloid dimers with a symmetric
spiro[oxazinane-piperazinedione] skeleton from Pestalotiopsis
sp. Org Lett. 17:4216–4219. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen L, Zhang QY, Jia M, Ming QL, Yue W,
Rahman K, Qin LP and Han T: Endophytic fungi with antitumor
activities: Their occurrence and anticancer compounds. Crit Rev
Microbiol. 42:454–473. 2016.PubMed/NCBI
|
19
|
Kiho T, Itahashi S, Sakushima M, Matsunaga
T, Usui S, Ukai S, Mori H, Sakamoto H and Ishiguro Y:
Polysaccharides in fungi. XXXVIII. Anti-diabetic activity and
structural feature of a galactomannan elaborated by
Pestalotiopsis species. Biol Pharm Bull. 20:118–121. 1997.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Kumar DS, Lau CS, Wan JM, Yang D and Hyde
KD: Immunomodulatory compounds from Pestalotiopsis
leucothës, an endophytic fungus from Tripterygium wilfordii.
Life Sci. 78:147–156. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Verma VC, Gangwar M, Yashpal M and Nath G:
Anticestodal activity of endophytic Pestalotiopsis sp. on
protoscoleces of hydatid cyst Echinococcus granulosus. Biomed Res
Int. 2013:3085152013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Tejesvi MV, Kini KR, Prakash HS, Subbiah V
and Shetty HS: Antioxidant, antihypertensive, and antibacterial
properties of endophytic Pestalotiopsis species from
medicinal plants. Can J Microbiol. 54:769–780. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Xia X, Kim S, Liu C and Shim SH: Secondary
metabolites produced by an endophytic fungus Pestalotiopsis
sydowiana and their 20S proteasome inhibitory activities.
Molecules. 21:pii: E944. 2016. View Article : Google Scholar
|
24
|
Li JY, Harper JK, Grant DM, Tombe BO,
Bashyal B, Hess WM and Strobel GA: Ambuic acid, a highly
functionalized cyclohexenone with antifungal activity from
Pestalotiopsis spp. and Monochaetia sp.
Phytochemistry. 56:463–468. 2001. View Article : Google Scholar : PubMed/NCBI
|
25
|
Harper JK, Barich DH, Hu JZ, Strobel GA
and Grant DM: Stereochemical analysis by solid-state NMR:
Structural predictions in ambuic acid. J Org Chem. 68:4609–4614.
2003. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ding G, Li Y, Fu S, Liu S, Wei J and Che
Y: Ambuic acid and torreyanin acid derivatives from the
endolichenic fungus Pestalotiopsis sp. J Nat Prod.
72:182–186. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Nakayama J, Uemura Y, Nishiguchi K,
Yoshimura N, Igarashi Y and Sonomoto K: Ambuic acid inhibits the
biosynthesis of cyclic peptide quormones in gram-positive bacteria.
Antimicrob Agents Chemother. 53:580–586. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Qi QY, Li EW, Han JJ, Pei YF, Ma K, Bao L,
Huang Y, Zhao F and Liu HW: New ambuic acid derivatives from the
solid culture of Pestalotiopsis neglecta and their nitric
oxide inhibitory activity. Sci Rep. 5:99582015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ali AM, Habeeb RA, El-Azizi NO, Khattab
DA, Abo-Shady RA and Elkabarity RH: Higher nitric oxide levels are
associated with disease activity in Egyptian rheumatoid arthritis
patients. Rev Bras Reumatol. 54:446–451. 2014.(In Portuguese).
View Article : Google Scholar : PubMed/NCBI
|
30
|
Coulter JA, McCarthy HO, Xiang J, Roedl W,
Wagner E, Robson T and Hirst DG: Nitric oxide-a novel therapeutic
for cancer. Nitric Oxide. 19:192–198. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Husain K, Hernandez W, Ansari RA and
Ferder L: Inflammation, oxidative stress and rennin angiotensin
system in atherosclerosis. World J Biol Chem. 6:209–217. 2015.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Beyazit Y, Efe C, Tanoglu A, Purnak T,
Sayilir A, Taskıran I, Kekilli M, Turhan T, Ozaslan E and Wahlin S:
Nitric oxide is a potential mediator of hepatic inflammation and
fibrogenesis in autoimmune hepatitis. Scand J Gastroenterol.
50:204–210. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Muscará MN and Wallace JL: Nitric Oxide.
V. therapeutic potential of nitric oxide donors and inhibitors. Am
J Physiol. 276:G1313–G1316. 1999.PubMed/NCBI
|
34
|
Denizot F and Lang R: Rapid colorimetric
assay for cell growth and survival. Modifications to the
tetrazolium dye procedure giving improved sensitivity and
reliability. J Immunol Methods. 89:271–277. 1986. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhao F, Chen L, Zhang M, Bi C, Li L, Zhang
Q, Shi C, Li M, Zhou S and Kong L: Inhibition of
lipopolysaccharide-induced iNOS and COX-2 expression by indole
alkaloid,
3-(hydroxy-methyl)-6,7-dihydroindolo[2,3-a]quinolizin-(12H)-one,
via NF-κB inactivation in RAW 264.7 macrophages. Planta Med.
79:782–787. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wohlmuth H, Deseo MA, Brushett DJ,
Thompson DR, Macfarlane G, Stevenson LM and Leach DN:
Diarylheptanoid from Pleuranthodium racemigerum with in vitro
prostaglandin E(2) inhibitory and cytotoxic activity. J Nat Prod.
73:743–746. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhao F, Xu H, He EQ, Jiang YT and Liu K:
Inhibitory effects of sesquiterpenes from Saussurea lappa on the
overproduction of nitric oxide and TNF-alpha release in
LPS-activated macrophages. J Asian Nat Prod Res. 10:1045–1053.
2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhao F, Wang L and Liu K: In vitro
anti-inflammatory effects of arctigenin, a lignan from Arctium
lappa L., through inhibition on iNOS pathway. J Ethnopharmacol.
122:457–462. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Murshid A, Gong J, Prince T, Borges TJ and
Calderwood SK: Scavenger receptor SREC-I mediated entry of TLR4
into Lipid microdomains and triggered inflammatory cytokine release
in RAW 264.7 Cells upon LPS activation. PLoS One. 10:e01225292015.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Liu Y, Shepherd EG and Nelin LD: MAPK
phosphatases-regulating the immune response. Nat Rev Immunol.
7:202–212. 2007. View Article : Google Scholar : PubMed/NCBI
|
41
|
Arthur JS and Ley SC: Mitogen-activated
protein kinases in innate immunity. Nat Rev Immunol. 13:679–692.
2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Rao KM: MAP kinase activation in
macrophages. J Leukoc Biol. 69:3–10. 2001.PubMed/NCBI
|
43
|
Kaminska B: MAPK signalling pathways as
molecular targets for anti-inflammatory therapy-from molecular
mechanisms to therapeutic benefits. Biochim Biophys Acta.
1754:253–262. 2005. View Article : Google Scholar : PubMed/NCBI
|
44
|
Baeuerle PA and Baltimore D: I kappa B: A
specific inhibitor of the NF-kappa B transcription factor. Science.
242:540–546. 1988. View Article : Google Scholar : PubMed/NCBI
|
45
|
Beg AA and Baldwin AS Jr: The I kappa B
proteins: Multifunctional regulators of Rel/NF-kappa B
transcription factors. Genes Dev. 7:2064–2070. 1993. View Article : Google Scholar : PubMed/NCBI
|