1
|
Peck-Radosavljevic M: Thrombocytopenia in
liver disease. Can J Gastroenterol. 14:60D–66D. 2000. View Article : Google Scholar : PubMed/NCBI
|
2
|
Thomopoulos KC, Labropoulou-Karatza C,
Mimidis KP, Katsakoulis EC, Iconomou G and Nikolopoulou VN:
Non-invasive predictors of the presence of large oesophageal
varices in patients with cirrhosis. Dig Liver Dis. 35:473–478.
2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Aref S, Mabed M, Selim T, Goda T and
Khafagy N: Thrombopoietin (TPO) levels in hepatic patients with
thrombocytopenia. Hematology. 9:351–356. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Afdhal N, McHutchison J, Brown R, Jacobson
I, Manns M, Poordad F, Weksler B and Esteban R: Thrombocytopenia
associated with chronic liver disease. J Hepatol. 48:1000–1007.
2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Stornaiuolo G, Amato A and Gaeta GB:
Adefovir dipivoxil-associated thrombocytopenia in a patient with
chronic hepatitis B. Dig Liver Dis. 38:211–212. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Rodeghiero F, Stasi R, Gernsheimer T,
Michel M, Provan D, Arnold DM, Bussel JB, Cines DB, Chong BH,
Cooper N, et al: Standardization of terminology, definitions and
outcome criteria in immune thrombocytopenic purpura of adults and
children: Report from an international working group. Blood.
113:pp. 2386–2393. 2009, View Article : Google Scholar : PubMed/NCBI
|
7
|
Shevach EM: Mechanisms of
foxp3+ T regulatory cell-mediated suppression. Immunity.
30:636–645. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wing K, Onishi Y, Prieto-Martin P,
Yamaguchi T, Miyara M, Fehervari Z, Nomura T and Sakaguchi S:
CTLA-4 control over Foxp3+ regulatory T cell function.
Science. 322:271–275. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mittal SK and Roche PA: Suppression of
antigen presentation by IL-10. Curr Opin Immunol. 34:22–27. 2015.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Keswani T, Sarkar S, Sengupta A and
Bhattacharyya A: Role of TGF-β and IL-6 in dendritic cells, Treg
and Th17 mediated immune response during experimental cerebral
malaria. Cytokine. 88:154–166. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Liu J, Hong X, Lin D, Luo X, Zhu M and Mo
H: Artesunate influences Th17/Treg lymphocyte balance by modulating
Treg apoptosis and Th17 proliferation in a murine model of
rheumatoid arthritis. Exp Ther Med. 13:2267–2273. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Shrivastava S, TrehanPati N, Patra S,
Kottilil S, Pande C, Trivedi SS and Sarin SK: Increased regulatory
T cells and impaired functions of circulating CD8 T lymphocytes is
associated with viral persistence in Hepatitis B virus-positive
newborns. J Viral Hepat. 20:582–591. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Feng S, Chen XM, Wang JF and Xu XQ: Th17
cells associated cytokines and cancer. Eur Rev Med Pharmacol Sci.
20:4032–4040. 2016.PubMed/NCBI
|
14
|
Harrington LE, Hatton RD, Mangan PR,
Turner H, Murphy TL, Murphy KM and Weaver CT: Interleukin
17-producing CD4+ effector T cells develop via a lineage
distinct from the T helper type 1 and 2 lineages. Nat Immunol.
6:1123–1132. 2005. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Li J, Lai X, Liao W, He Y, Liu Y and Gong
J: The dynamic changes of Th17/Treg cytokines in rat liver
transplant rejection and tolerance. Int Immunopharmacol.
11:962–967. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ni K, Zhao L, Wu J, Chen W, Hongya Yang
and Li X: Th17/Treg balance in children with obstructive sleep
apnea syndrome and the relationship with allergic rhinitis. Int J
Pediatr Otorhinolaryngol. 79:1448–1454. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zheng Y, Wang Z, Deng L, Zhang G, Yuan X,
Huang L, Xu W and Shen L: Modulation of STAT3 and STAT5 activity
rectifies the imbalance of Th17 and Treg cells in patients with
acute coronary syndrome. Clin Immunol. 157:65–77. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kleinewietfeld M and Hafler DA: The
plasticity of human Treg and Th17 cells and its role in
autoimmunity. Semin Immunol. 25:305–312. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Su ZJ, Yu XP, Guo RY, Ming DS, Huang LY,
Su ML, Deng Y and Lin ZZ: Changes in the balance between Treg and
Th17 cells in patients with chronic hepatitis B. Diagn Microbiol
Infect Dis. 76:437–444. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li K, Liu H and Guo T: Th17/Treg imbalance
is an indicator of liver cirrhosis process and a risk factor for
HCC occurrence in HBV patients. Clin Res Hepatol Gastroenterol.
41:399–407. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Gilli SC, de Souza Medina S, de Castro V,
Fernandes LG and Saad ST: Platelet associated IgG may be related
with thrombocytopenia in patients with myelodysplastic syndromes.
Leuk Res. 36:554–559. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Aboul-Fotoh L-M, Abdel Raheem MM, El-Deen
MA and Osman AM: Role of CD4+CD25+ T cells in
children with idiopathic thrombocytopenic purpura. J Pediatr
Hematol Oncol. 33:81–85. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Liu B, Gao W, Zhang L, Wang J, Chen M,
Peng M, Ren H and Hu P: Th17/Treg imbalance and increased
interleukin-21 are associated with liver injury in patients with
chronic severe hepatitis B. Int Immunopharmacol. 46:48–55. 2017.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Cao J, Chen C, Zeng L, Li L, Li X, Li Z
and Xu K: Elevated plasma IL-22 levels correlated with Th1 and Th22
cells in patients with immune thrombocytopenia. Clin Immunol.
141:121–123. 2011. View Article : Google Scholar : PubMed/NCBI
|