1
|
Vander Have KL, Hensinger RN, Caird M,
Johnston C and Farley FA: Congenital pseudarthrosis of the tibia. J
Am Acad Orthop Surg. 16:228–236. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
McCollum GA, Myerson MS and Jonck J:
Managing the cystic osteochondral defect: Allograft or autograft.
Foot Ankle Clin. 18:113–133. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Chahal J, Gross AE, Gross C, Mall N, Dwyer
T, Chahal A, Whelan DB and Cole BJ: Outcomes of osteochondral
allograft transplantation in the knee. Arthroscopy. 29:575–588.
2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Espana EM, Shah S, Santhiago MR and Singh
AD: Graft versus host disease: Clinical evaluation, diagnosis and
management. Graefes Arch Clin Exp Ophthalmol. 251:1257–1266. 2013.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Tate Knothe ML: Top down and bottom up
engineering of bone. J Biomech. 44:304–312. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Marolt D, Knezevic M and Novakovic GV:
Bone tissue engineering with human stem cells. Stem Cell Res Ther.
1:102010. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Fröhlich M, Grayson WL, Wan LQ, Marolt D,
Drobnic M and Vunjak-Novakovic G: Tissue engineered bone grafts:
Biological requirements, tissue culture and clinical relevance.
Curr Stem Cell Res Ther. 3:254–264. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhu H, Yang F, Tang B, Li XM, Chu YN, Liu
YL, Wang SG, Wu DC and Zhang Y: Mesenchymal stem cells attenuated
PLGA-induced inflammatory responses by inhibiting host DC
maturation and function. Biomaterials. 53:688–698. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sun H and Yang HL: Calcium phosphate
scaffolds combined with bone morphogenetic proteins or mesenchymal
stem cells in bone tissue engineering. Chin Med J (Engl).
128:1121–1127. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Siddiqui NA and Owen JM: Clinical advances
in bone regeneration. Curr Stem Cell Res Ther. 8:192–200. 2013.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Fisher DM, Wong JM, Crowley C and Khan WS:
Preclinical and clinical studies on the use of growth factors for
bone repair: A systematic review. Curr Stem Cell Res Ther.
8:260–268. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Mills LA and Simpson AH: In vivo models of
bone repair. J Bone Joint Surg Br. 94:865–874. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Shekkeris AS, Jaiswal PK and Khan WS:
Clinical applications of mesenchymal stem cells in the treatment of
fracture non-union and bone defects. Curr Stem Cell Res Ther.
7:127–133. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Papakostidis C, Bhandari M and Giannoudis
PV: Distraction osteogenesis in the treatment of long bone defects
of the lower limbs: Effectiveness, complications and clinical
results; a systematic review and meta-analysis. Bone Joint J.
95-B:1673–1680. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Berner A, Reichert JC, Müller MB, Zellner
J, Pfeifer C, Dienstknecht T, Nerlich M, Sommerville S, Dickinson
IC, Schütz MA and Füchtmeier B: Treatment of long bone defects and
non-unions: From research to clinical practice. Cell Tissue Res.
347:501–519. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Boos AM, Arkudas A, Kneser U, Horch RE and
Beier JP: Bone tissue engineering for bone defect therapy. Handchir
Mikrochir Plast Chir. 42:360–368. 2010.(In German). View Article : Google Scholar : PubMed/NCBI
|
17
|
Contador D, Ezquer F, Espinosa M,
Arango-Rodriguez M, Puebla C, Sobrevia L and Conget P:
Dexamethasone and rosiglitazone are sufficient and necessary for
producing functional adipocytes from mesenchymal stem cells. Exp
Biol Med (Maywood). 240:1235–1246. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Castro FO, Torres A, Cabezas J and
Rodríguez-Alvarez L: Combined use of platelet rich plasma and
vitamin C positively affects differentiation in vitro to mesodermal
lineage of adult adipose equine mesenchymal stem cells. Res Vet
Sci. 96:95–101. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang HT, Zha ZG, Cao JH, Liang ZJ, Wu H,
He MT, Zang X, Yao P and Zhang JQ: Apigenin accelerates
lipopolysaccharide induced apoptosis in mesenchymal stem cells
through suppressing vitamin D receptor expression. Chin Med J
(Engl). 124:3537–3545. 2011.PubMed/NCBI
|
20
|
Wu Y, Peng Y, Gao D, Feng C, Yuan X, Li H,
Wang Y, Yang L, Huang S and Fu X: Mesenchymal stem cells suppress
fibroblast proliferation and reduce skin fibrosis through a
TGF-β3-dependent activation. Int J Low Extrem Wounds. 14:50–62.
2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hagmann S, Moradi B, Frank S, Dreher T,
Kämmerer PW, Richter W and Gotterbarm T: FGF-2 addition during
expansion of human bone marrow-derived stromal cells alters MSC
surface marker distribution and chondrogenic differentiation
potential. Cell Prolif. 46:396–407. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Thakkar UG, Trivedi HL, Vanikar AV and
Dave SD: Insulin-secreting adipose-derived mesenchymal stromal
cells with bone marrow-derived hematopoietic stem cells from
autologous and allogenic sources for type 1 diabetes mellitus.
Cytotherapy. 17:940–947. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zheng YH, Xiong W, Su K, Kuang SJ and
Zhang ZG: Multilineage differentiation of human bone marrow
mesenchymal stem cells in vitro and in vivo. Exp Ther Med.
5:1576–1580. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Abbas Mashhadi F, Fallahi Sichani H,
Khoshzaban A, Mahdavi N and Bagheri SS: Expression of odontogenic
genes in human bone marrow mesenchymal stem cells. Cell J.
15:136–141. 2013.PubMed/NCBI
|
25
|
Song K, Huang M, Shi Q, Du T and Cao Y:
Cultivation and identification of rat bone marrow-derived
mesenchymal stem cells. Mol Med Rep. 10:755–760. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yang Z, Zhu L, Li F, Wang J, Wan H and Pan
Y: Bone marrow stromal cells as a therapeutic treatment for
ischemic stroke. Neurosci Bull. 30:524–534. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hang HL and Xia Q: Role of BMSCs in liver
regeneration and metastasis after hepatectomy. World J
Gastroenterol. 20:126–132. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu J, Liu X and Cao Y: Progress of
methods of inducing bone marrow mesenchymal stem cells into
chondrocytes in vitro. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi.
25:618–623. 2011.(In Chinese). PubMed/NCBI
|
29
|
Fishero BA, Kohli N, Das A, Christophel JJ
and Cui Q: Current concepts of bone tissue engineering for
craniofacial bone defect repair. Craniomaxillofac Trauma Reconstr.
8:23–30. 2015.PubMed/NCBI
|
30
|
Sharma AK and Cheng EY: Growth factor and
small molecule influence on urological tissue regeneration
utilizing cell seeded scaffolds. Adv Drug Deliv Rev. 82–83:86–92.
2015. View Article : Google Scholar
|
31
|
Gothard D, Smith EL, Kanczler JM, Rashidi
H, Qutachi O, Henstock J, Rotherham M, El Haj A, Shakesheff KM and
Oreffo RO: Tissue engineered bone using select growth factors: A
comprehensive review of animal studies and clinical translation
studies in man. Eur Cell Mater. 28:166–208. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yamamoto M, Hokugo A, Takahashi Y, Nakano
T, Hiraoka M and Tabata Y: Combination of BMP-2-releasing
gelatin/β-TCP sponges with autologous bone marrow for bone
regeneration of X-ray-irradiated rabbit ulnar defects.
Biomaterials. 56:18–25. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Khoshkam V, Chan HL, Lin GH, Mailoa J,
Giannobile WV, Wang HL and Oh TJ: Outcomes of regenerative
treatment with rhPDGF-BB and rhFGF-2 for periodontal intra-bony
defects: A systematic review and meta-analysis. J Clin Periodontol.
42:272–280. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Mullen LM, Best SM, Ghose S, Wardale J,
Rushton N and Cameron RE: Bioactive IGF-1 release from collagen-GAG
scaffold to enhance cartilage repair in vitro. J Mater Sci Mater
Med. 26:53252015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang X, Li Y, Han R, He C, Wang G, Wang J,
Zheng J, Pei M and Wei L: Demineralized bone matrix combined bone
marrow mesenchymal stem cells, bone morphogenetic protein-2 and
transforming growth factor-β3 gene promoted pig cartilage defect
repair. PLoS One. 9:e1160612014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yang DH, Lee DW, Kwon YD, Kim HJ, Chun HJ,
Jang JW and Khang G: Surface modification of titanium with
hydroxyapatite-heparin-BMP-2 enhances the efficacy of bone
formation and osseointegration in vitro and in vivo. J Tissue Eng
Regen Med. 9:1067–1077. 2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Noh SS, Bhang SH, La WG, Lee S, Shin JY,
Ma YJ, Jang HK, Kang S, Jin M, Park J and Kim BS: A dual delivery
of substance P and bone morphogenetic protein-2 for mesenchymal
stem cell recruitment and bone regeneration. Tissue Eng Part A.
21:1275–1287. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Guo P, Shi ZL, Liu A, Lin T, Bi F, Shi M
and Yan SG: Effects of cartilage oligomeric matrix protein on bone
morphogenetic protein-2-induced differentiation of mesenchymal stem
cells. Orthop Surg. 6:280–287. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Chen Y, Roohani-Esfahani SI, Lu Z, Zreiqat
H and Dunstan CR: Zirconium ions up-regulate the BMP/SMAD signaling
pathway and promote the proliferation and differentiation of human
osteoblasts. PLoS One. 10:e01134262015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Abula K, Muneta T, Miyatake K, Yamada J,
Matsukura Y, Inoue M, Sekiya I, Graf D, Economides AN, Rosen V and
Tsuji K: Elimination of BMP7 from the developing limb mesenchyme
leads to articular cartilage degeneration and synovial inflammation
with increased age. FEBS Lett. 589:1240–1248. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Santos A, Bakker AD, Willems HM,
Bravenboer N, Bronckers AL and Klein-Nulend J: Mechanical loading
stimulates BMP7, but not BMP2, production by osteocytes. Calcif
Tissue Int. 89:318–326. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ren Y, Han C, Jia Y, Yin H and Li S:
Expression of human bone morphogenetic protein 7 gene in
adipose-derived stem cells and its effects on osteogenic phenotype.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 25:848–853. 2011.(In
Chinese). PubMed/NCBI
|
43
|
Stöve J, Schneider-Wald B, Scharf HP and
Schwarz ML: Bone morphogenetic protein 7 (bmp-7) stimulates
proteoglycan synthesis in human osteoarthritic chondrocytes in
vitro. Biomed Pharmacother. 60:639–643. 2006. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhang X and Godbey WT: Viral vectors for
gene delivery in tissue engineering. Adv Drug Deliv Rev.
58:515–534. 2006. View Article : Google Scholar : PubMed/NCBI
|
45
|
Partridge KA and Oreffo RO: Gene delivery
in bone tissue engineering: Progress and prospects using viral and
nonviral strategies. Tissue Eng. 10:295–307. 2004. View Article : Google Scholar : PubMed/NCBI
|
46
|
Warnock JN, Daigre C and Al-Rubeai M:
Introduction to viral vectors. Methods Mol Biol. 737:1–25. 2011.
View Article : Google Scholar : PubMed/NCBI
|