1
|
Dodiyi-Manuel A and Wakama IE:
Predispositions of carcinoma of the breast: A review. Niger J Med.
23:7–12. 2014.PubMed/NCBI
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Panieri E: Breast-cancer awareness in
low-income countries. Lancet Oncol. 14:274–275. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhang BN, Cao XC, Chen JY, Chen J, Fu L,
Hu XC, Jiang ZF, Li HY, Liao N, Liu DG, et al: Guidelines on the
diagnosis and treatment of breast cancer (2011 edition). Gland
Surg. 1:39–61. 2012.PubMed/NCBI
|
5
|
Luo Q, Li X, Li J, Kong X, Zhang J, Chen
L, Huang Y and Fang L: MiR-15a is underexpressed and inhibits the
cell cycle by targeting CCNE1 in breast cancer. Int J Oncol.
43:1212–1218. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Nakayama N, Nakayama K, Shamima Y,
Ishikawa M, Katagiri A, Iida K and Miyazaki K: Gene amplification
CCNE1 is related to poor survival and potential therapeutic target
in ovarian cancer. Cancer. 116:2621–2634. 2010.PubMed/NCBI
|
7
|
Coradini D, Boracchi P, Oriana S,
Biganzoli E and Ambrogi F: Differential expression of genes
involved in the epigenetic regulation of cell identity in normal
human mammary cell commitment and differentiation. Chin J Cancer.
33:501–510. 2014.PubMed/NCBI
|
8
|
Nagel I, Akasaka T, Klapper W, Gesk S,
Böttcher S, Ritgen M, Harder L, Kneba M, Dyer MJ and Siebert R:
Identification of the gene encoding cyclin E1 (CCNE1) as a novel
IGH translocation partner in t(14;19)(q32;q12) in diffuse large
B-cell lymphoma. Haematologica. 94:1020–1023. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Keyomarsi K and Pardee AB: Redundant
cyclin overexpression and gene amplification in breast cancer
cells. Proc Natl Acad Sci USA. 90:1112–1116. 1993. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sutherland RL and Musgrove EA: Cyclins and
breast cancer. J Mammary Gland Biol Neoplasia. 9:95–104. 2004.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Han JY, Wang H, Xie YT, Li Y, Zheng LY,
Ruan Y, Song AP, Tian XX and Fang WG: Association of germline
variation in CCNE1 and CDK2 with breast cancer risk, progression
and survival among Chinese Han women. PLoS One. 7:e492962012.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang X, Hu S, Zhang X, Wang L, Zhang X,
Yan B, Zhao J, Yang A and Zhang R: MicroRNA-7 arrests cell cycle in
G1 phase by directly targeting CCNE1 in human hepatocellular
carcinoma cells. Biochem Biophys Res Commun. 443:1078–1084. 2014.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Zubillaga-Guerrero MI, Ldel Alarcon-Romero
C, Illades-Aguiar B, Flores-Alfaro E, Bermúdez-Morales VH, Deas J
and Peralta-Zaragoza O: MicroRNA miR-16-1 regulates CCNE1 (cyclin
E1) gene expression in human cervical cancer cells. Int J Clin Exp
Med. 8:15999–16006. 2015.PubMed/NCBI
|
14
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Asghari F, Haghnavaz N, Baradaran B,
Hemmatzadeh M and Kazemi T: Tumor suppressor microRNAs: Targeted
molecules and signaling pathways in breast cancer. Biomed
Pharmacother. 81:305–317. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang M, Liu D, Li W, Wu X, Gao C and Li
X: Identification of featured biomarkers in breast cancer with
microRNA microarray. Arch Gynecol Obstet. 294:1047–1053. 2016.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Veronese A, Lupini L, Consiglio J, Visone
R, Ferracin M, Fornari F, Zanesi N, Alder H, D'Elia G, Gramantieri
L, et al: Oncogenic role of miR-483-3p at the IGF2/483 locus.
Cancer Res. 70:3140–3149. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu H, French BA, Li J, Tillman B and
French SW: Altered regulation of miR-34a and miR-483-3p in
alcoholic hepatitis and DDC fed mice. Exp Mol Pathol. 99:552–557.
2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Qiao Y, Zhao Y, Liu Y, Ma N, Wang C, Zou
J, Liu Z, Zhou Z, Han D, He J, et al: miR-483-3p regulates
hyperglycaemia-induced cardiomyocyte apoptosis in transgenic mice.
Biochem Biophys Res Commun. 477:541–547. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Arrighetti N, Cossa G, De Cecco L, Stucchi
S, Carenini N, Corna E, Gandellini P, Zaffaroni N, Perego P and
Gatti L: PKC-alpha modulation by miR-483-3p in platinum-resistant
ovarian carcinoma cells. Toxicol Appl Pharmacol. 310:9–19. 2016.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Hao J, Zhang S, Zhou Y, Hu X and Shao C:
MicroRNA 483-3p suppresses the expression of DPC4/Smad4 in
pancreatic cancer. FEBS Lett. 585:207–213. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Deng M, Li F, Ballif BA, Li S, Chen X, Guo
L and Ye X: Identification and functional analysis of a novel
cyclin e/cdk2 substrate ankrd17. J Biol Chem. 284:7875–7888. 2009.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhao J, Kennedy BK, Lawrence BD, Barbie
DA, Matera AG, Fletcher JA and Harlow E: NPAT links cyclin E-Cdk2
to the regulation of replication-dependent histone gene
transcription. Genes Dev. 14:2283–2297. 2000. View Article : Google Scholar : PubMed/NCBI
|