1
|
Reber LL, Sibilano R, Mukai K and Galli
SJ: Potential effector and immunoregulatory functions of mast cells
in mucosal immunity. Mucosal Immunol. 8:444–463. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Andersson C, Tufvesson E, Diamant Z and
Bjermer L: Revisiting the role of the mast cell in asthma. Curr
Opin Pulm Med. 22:10–17. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Le DD, Schmit D, Heck S, Omlor AJ, Sester
M, Herr C, Schick B, Daubeuf F, Fähndrich S, Bals R, et al:
Increase of mast cell-nerve association and neuropeptide receptor
expression on mast cells in perennial allergic rhinitis.
Neuroimmunomodulation. 23:261–270. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Liu FT, Goodarzi H and Chen HY: IgE, mast
cells, and eosinophils in atopic dermatitis. Clin Rev Allergy
Immunol. 41:298–310. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Gaudenzio N, Marichal T, Galli SJ and
Reber LL: Genetic and imaging approaches reveal pro-inflammatory
and immunoregulatory roles of mast cells in contact
hypersensitivity. Front Immunol. 9:12752018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Morita H, Saito H, Matsumoto K and Nakae
S: Regulatory roles of mast cells in immune responses. Semin
Immunopathol. 38:623–629. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Otsuka A, Nonomura Y and Kabashima K:
Roles of basophils and mast cells in cutaneous inflammation. Semin
Immunopathol. 38:563–570. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Saarinen JV, Harvima RJ, Naukkarinen A,
Horsmanheimo M and Harvima IT: Interleukin-4-positive mast cells
are highly associated with the extent of immediate allergic wheal
reaction in the skin. Allergy. 56:58–64. 2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Dissanayake E and Inoue Y: MicroRNAs in
allergic disease. Curr Allergy Asthma Rep. 16:672016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mattes J, Collison A, Plank M, Phipps S
and Foster PS: Antagonism of microRNA-126 suppresses the effector
function of TH2 cells and the development of allergic airways
disease. Proc Natl Acad Sci USA. 106:18704–18709. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ishizaki T, Tamiya T, Taniguchi K, Morita
R, Kato R, Okamoto F, Saeki K, Nomura M, Nojima Y and Yoshimura A:
miR126 positively regulates mast cell proliferation and cytokine
production through suppressing Spred1. Genes Cells. 16:803–814.
2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Muñoz-Cruz S, Mendoza-Rodríguez Y,
Nava-Castro KE, Yepez-Mulia L and Morales-Montor J: Gender-related
effects of sex steroids on histamine release and FcεRI expression
in rat peritoneal mast cells. J Immunol Res. 2015:3518292015.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Carlos D, Sá-Nunes A, de Paula L,
Matias-Peres C, Jamur MC, Oliver C, Serra MF, Martins MA and
Faccioli LH: Histamine modulates mast cell degranulation through an
indirect mechanism in a model IgE-mediated reaction. Eur J Immunol.
36:1494–1503. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Vennegaard MT, Bonefeld CM, Hagedorn PH,
Bangsgaard N, Løvendorf MB, Odum N, Woetmann A, Geisler C and Skov
L: Allergic contact dermatitis induces upregulation of identical
microRNAs in humans and mice. Contact Dermatitis. 67:298–305. 2012.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Harris TA, Yamakuchi M, Ferlito M, Mendell
JT and Lowenstein CJ: MicroRNA-126 regulates endothelial expression
of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA.
105:1516–1521. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chistiakov DA, Orekhov AN and Bobryshev
YV: The role of miR-126 in embryonic angiogenesis, adult vascular
homeostasis, and vascular repair and its alterations in
atherosclerotic disease. J Mol Cell Cardiol. 97:47–55. 2016.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Goerke SM, Kiefer LS, Stark GB, Simunovic
F and Finkenzeller G: miR-126 modulates angiogenic growth
parameters of peripheral blood endothelial progenitor cells. Biol
Chem. 396:245–252. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kong F, Zhou J, Zhou W, Guo Y, Li G and
Yang L: Protective role of microRNA-126 in intracerebral
hemorrhage. Mol Med Rep. 15:1419–1425. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Vara Fresno JA, Casado E, de Castro J,
Cejas P, Belda-Iniesta C and González-Barón M: PI3K/Akt signalling
pathway and cancer. Cancer Treat Rev. 30:193–204. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yu JS and Cui W: Proliferation, survival
and metabolism: The role of PI3K/AKT/mTOR signalling in
pluripotency and cell fate determination. Development.
143:3050–3060. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Biethahn K, Orinska Z, Vigorito E,
Goyeneche-Patino DA, Mirghomizadeh F, Föger N and Bulfone-Paus S:
miRNA-155 controls mast cell activation by regulating the PI3Kγ
pathway and anaphylaxis in a mouse model. Allergy. 69:752–762.
2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gao H, Deng H, Xu H, Yang Q, Zhou Y, Zhang
J, Zhao D and Liu F: MicroRNA-223 promotes mast cell apoptosis by
targeting the insulin-like growth factor 1 receptor. Exp Ther Med.
11:2171–2176. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lin H, Zheng C, Li J, Yang C and Hu L:
Lentiviral shRNA against KCa3.1 inhibits allergic response in
allergic rhinitis and suppresses mast cell activity via PI3K/AKT
signaling pathway. Sci Rep. 5:131272015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chorev E, Manor Y and Yarom Y: Density is
destiny-on [corrected] the relation between quantity of T-type Ca2+
channels and neuronal electrical behavior. CNS Neurol Disord Drug
Targets. 5:655–662. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Holowka D, Wilkes M, Stefan C and Baird B:
Roles for Ca2+ mobilization and its regulation in mast cell
functions: Recent progress. Biochem Soc Trans. 44:505–509. 2016.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Aurora AB, Mahmoud AI, Luo X, Johnson BA,
van Rooij E, Matsuzaki S, Humphries KM, Hill JA, Bassel-Duby R,
Sadek HA and Olson EN: MicroRNA-214 protects the mouse heart from
ischemic injury by controlling Ca2+ overload and cell
death. J Clin Invest. 122:1222–1232. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wahlquist C, Jeong D, Rojas-Muñoz A, Kho
C, Lee A, Mitsuyama S, van Mil A, Park WJ, Sluijter JP, Doevendans
PA, et al: Inhibition of miR-25 improves cardiac contractility in
the failing heart. Nature. 508:531–535. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Andersen M, Trapani D, Ravn J, Sørensen
JB, Andersen CB, Grauslund M and Santoni-Rugiu E:
Methylation-associated silencing of microRNA-126 and its host gene
EGFL7 in malignant pleural mesothelioma. Anticancer Res.
35:6223–6229. 2015.PubMed/NCBI
|
30
|
Song L, Xie X, Yu S, Peng F and Peng L:
MicroRNA-126 inhibits proliferation and metastasis by targeting
pik3r2 in prostate cancer. Mol Med Rep. 13:1204–1210. 2016.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhang GM, Luo L, Ding XM, Dong DH, Li B,
Ma XC and Sun LJ: MicroRNA-126 inhibits tumor cell invasion and
metastasis by downregulating ROCK1 in renal cell carcinoma. Mol Med
Rep. 13:5029–5036. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Li H, Meng F, Ma J, Yu Y, Hua X, Qin J and
Li Y: Insulin receptor substrate-1 and Golgi phosphoprotein 3 are
downstream targets of miR-126 in esophageal squamous cell
carcinoma. Oncol Rep. 32:1225–1233. 2014. View Article : Google Scholar : PubMed/NCBI
|