1
|
Court-Brown CM, McBirnie J and Wilson G:
Adult ankle fractures-an increasing problem? Acta Orthop Scand.
69:43–47. 1998. View Article : Google Scholar : PubMed/NCBI
|
2
|
Mandell JC, Khurana B and Smith SE: Stress
fractures of the foot and ankle, part 1: Biomechanics of bone and
principles of imaging and treatment. Skeletal Radiol. 46:1021–1029.
2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kang P, Tang B, Liu Y, Liu X, Shen Y, Liu
Z, Yang H and Zhang L: Profile and procedures for fractures among
1323 fracture patients from the 2010 Yushu earthquake, China. Am J
Emerg Med. 34:2132–2139. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zou L, Zhang G, Liu L, Chen C, Cao X and
Cai J: A MicroRNA-124 polymorphism is associated with fracture
healing via modulating BMP6 expression. Cell Physiol Biochem.
41:2161–2170. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Gennari L, Bianciardi S and Merlotti D:
MicroRNAs in bone diseases. Osteoporos Int. 28:1191–1213. 2017.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Huang HM, Li XL, Tu SQ, Chen XF, Lu CC and
Jiang LH: Effects of roughly focused extracorporeal shock waves
therapy on the expressions of bone morphogenetic protein-2 and
osteoprotegerin in osteoporotic fracture in rats. Chin Med J
(Engl). 129:2567–2575. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hulth A: Current concepts of fracture
healing. Clin Orthop Relat Res. 1–284. 1989.
|
8
|
Tatsuyama K, Maezawa Y, Baba H, Imamura Y
and Fukuda M: Expression of various growth factors for cell
proliferation and cytodifferentiation during fracture repair of
bone. Eur J Histochem. 44:269–278. 2000.PubMed/NCBI
|
9
|
Ma C, Wei F, Xia H, Liu H, Dong X, Zhang
Y, Luo Q, Liu Y and Li Y: MicroRNA-10b mediates TGF-β1-regulated
glioblastoma proliferation, migration and epithelial-mesenchymal
transition. Int J Oncol. 50:1739–1748. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sandbothe M, Buurman R, Reich N, Greiwe L,
Vajen B, Gürlevik E, Schäffer V, Eilers M, Kühnel F, Vaquero A, et
al: The microRNA-449 family inhibits TGF-β-mediated liver cancer
cell migration by targeting SOX4. J Hepatol. 66:1012–1021. 2017.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Canalis E, McCarthy T and Centrella M:
Growth factors and the regulation of bone remodeling. J Clin
Invest. 81:277–281. 1988. View Article : Google Scholar : PubMed/NCBI
|
13
|
Beige J, Kreutz R and Rothermund L: Acute
renal failure: Pathophysiology and clinical management. Dtsch Med
Wochenschr. 132:2569–2578. 2007.(In German). View Article : Google Scholar : PubMed/NCBI
|
14
|
Joyce ME, Roberts AB, Sporn MB and
Bolander ME: Transforming growth factor-beta and the initiation of
chondrogenesis and osteogenesis in the rat femur. J Cell Biol.
110:2195–2207. 1990. View Article : Google Scholar : PubMed/NCBI
|
15
|
Centrella M, McCarthy TL and Canalis E:
Transforming growth factor beta is a bifunctional regulator of
replication and collagen synthesis in osteoblast-enriched cell
cultures from fetal rat bone. J Biol Chem. 262:2869–2874.
1987.PubMed/NCBI
|
16
|
Zhao X, Mohan R, Özcan S and Tang X:
MicroRNA-30d induces insulin transcription factor MafA and insulin
production by targeting mitogen-activated protein 4 kinase 4
(MAP4K4) in pancreatic β-cells. J Biol Chem. 287:31155–31164. 2012.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Chen K and Rajewsky N: The evolution of
gene regulation by transcription factors and microRNAs. Nat Rev
Genet. 8:93–103. 2007. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Bai W, Chen Y, Yang J, Niu P, Tian L and
Gao A: Aberrant miRNA profiles associated with chronic benzene
poisoning. Exp Mol Pathol. 96:426–430. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kim JO, Song DW, Kwon EJ, Hong SE, Song
HK, Min CK and Kim DH: miR-185 plays an anti-hypertrophic role in
the heart via multiple targets in the calcium-signaling pathways.
PLoS One. 10:e01225092015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ma X, Shen D, Li H, Zhang Y, Lv X, Huang
Q, Gao Y, Li X, Gu L, Xiu S, et al: MicroRNA-185 inhibits cell
proliferation and induces cell apoptosis by targeting VEGFA
directly in von Hippel-Lindau-inactivated clear cell renal cell
carcinoma. Urol Oncol. 33:169.e1–e111. 2015. View Article : Google Scholar
|
21
|
Bao L, Fu X, Si M, Wang Y, Ma R, Ren X and
Lv H: MicroRNA-185 targets SOCS3 to inhibit beta-cell dysfunction
in diabetes. PLoS One. 10:e01160672015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Fu P, Du F, Yao M, Lv K and Liu Y:
MicroRNA-185 inhibits proliferation by targeting c-Met in human
breast cancer cells. Exp Ther Med. 8:1879–1883. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang R, Tian S, Wang HB, Chu DP, Cao JL,
Xia HF and Ma X: MiR-185 is involved in human breast carcinogenesis
by targeting Vegfa. FEBS Lett. 588:4438–4447. 2014. View Article : Google Scholar : PubMed/NCBI
|