1
|
Jung J, Kim H, Yoon SM, Cho B, Kim YJ,
Kwak J and Kim JH: Targeting accuracy of image-guided stereotactic
body radiation therapy for hepatocellular carcinoma in real-life
clinical practice: In vivo assessment using hepatic parenchymal
changes on Gd-EOB-DTPA-enhanced magnetic resonance images. Int J
Radiat Oncol Biol Phys. S0360-3016:30811–30813. 2018.
|
2
|
Kavitha M, Mubeen K and Vijayalakshmi KR:
A study on Evaluation of efficacy of bethanechol in the management
of chemoradiation-induced xerostomia in oral cancer patients. J
Oral Maxillofac Pathol. 21:459–460. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Szybalski W: Molecular events resulting in
radiation injury, repair and sensitization of DNA, Radiation
research. Supplement. 7:147–159. 1967.
|
4
|
Yazdi Keramati F, Monfared Shabestani A,
Tashakkorian H, Mahmoudzadeh A and Borzoueisileh S: Radioprotective
effect of Zamzam (alkaline) water: A cytogenetic study. J Environ
Radioact. 167:166–169. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kirakosyan G, Torgomyan H, Malakyan M,
Bajinyan S and Trchounian A: Protective effect of some amino acids
synthesized derivatives and their chelates on Escherichia coli
under X-ray irradiation. Indian J Biochem Biophys. 50:289–295.
2013.PubMed/NCBI
|
6
|
Greenberger JS, Clump D, Kagan V, Bayir H,
Lazo JS, Wipf P, Li S, Gao X and Epperly MW: Strategies for
discovery of small molecule radiation protectors and radiation
mitigators. Front Oncol. 1:592012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kunwar A, Adhikary B, Jayakumar S, Barik
A, Chattopadhyay S, Raghukumar S and Priyadarsini KI: Melanin, a
promising radioprotector: Mechanisms of actions in a mice model.
Toxicol Appl Pharmacol. 264:202–211. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rostami A, Moosavi SA, Changizi V and
Ardakani Abbasian A: Radioprotective effects of selenium and
vitamin-E against 6MV X-rays in human blood lymphocytes by
micronucleus assay. Med J Islam Repub Iran. 30:3672016.PubMed/NCBI
|
9
|
Crescenti E, Croci M, Medina V, Sambuco L,
Bergoc R and Rivera E: Radioprotective potential of a novel
therapeutic formulation of oligoelements Se, Zn, Mn plus Lachesis
muta venom. J Radiat Res. 50:537–544. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Nishimura Y, Kim HS, Ikota N, Arima H, Bom
HS, Kim YH, Watanabe Y, Yukawa M and Ozawa T: Radioprotective
effect of chitosan in sub-lethally X-ray irradiated mice. J Radiat
Res. 44:53–58. 2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Emami S, Hosseinimehr SJ, Taghdisi SM and
Akhlaghpoor S: Kojic acid and its manganese and zinc complexes as
potential radioprotective agents. Bioorg Med Chem Lett. 17:45–48.
2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bruni N, Capucchio MT, Biasibetti E,
Pessione E, Cirrincione S, Giraudo L, Corona A and Dosio F:
Antimicrobial activity of lactoferrin-related peptides and
applications in human and veterinary medicine. Molecules. 21:pii:
E752. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Baveye S, Elass E, Mazurier J, Spik G and
Legrand D: Lactoferrin: A multifunctional glycoprotein involved in
the modulation of the inflammatory process. Clin Chem Lab Med.
37:281–286. 1999. View Article : Google Scholar : PubMed/NCBI
|
14
|
Berlutti F, Pantanella F, Natalizi T,
Frioni A, Paesano R, Polimeni A and Valenti P: Antiviral properties
of lactoferrin-a natural immunity molecule. Molecules.
16:6992–7018. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Inamori M, Togawa J, Matsumoto S, Harad K,
Matsuura M, Iida H, Akimoto K, Endo H, Nonaka T, Takahashi H, et
al: Protective effect of lactoferrin on acute acid reflux-induced
esophageal mucosal damage. Hepatogastroenterology. 61:1595–1600.
2014.PubMed/NCBI
|
16
|
Kruzel ML and Zimecki M: Lactoferrin and
immunologic dissonance: Clinical implications. Arch Immunol Ther
Exp (Warsz). 50:399–410. 2002.PubMed/NCBI
|
17
|
Sriramoju B, Kanwar RK and Kanwar JR:
Lactoferrin induced neuronal differentiation: A boon for brain
tumours. Int J Dev Neurosci. 41:28–36. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sakai M, Matsushita T, Hoshino R, Ono H,
Ikai K and Sakai T: Identification of the protective mechanisms of
Lactoferrin in the irradiated salivary gland. Sci Rep. 7:97532017.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Horiuchi Y, Higuchi T, Tatsumi K, Takakura
K, Fujii S and Konishi I: Lactoferrin is associated with a decrease
in oocyte depletion in mice receiving cyclophosphamide. Fertil
Steril. 91 5 Suppl:S2069–S2078. 2009. View Article : Google Scholar
|
20
|
Nagy K, Urban E, Fazekas O, Thurzo L and
Nagy E: Controlled study of lactoperoxidase gel on oral flora and
saliva in irradiated patients with oral cancer. J Craniofac Surg.
18:1157–1164. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Bella LM, Fieri I, Tessaro FHG, Nolasco
EL, Nunes FPB, Ferreira SS, Azevedo CB and Martins JO: Vitamin D
modulates hematological parameters and cell migration into
peritoneal and pulmonary cavities in alloxan-diabetic mice. Biomed
Res Int. 2017:76518152017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Banath JP, Fushiki M and Olive PL:
Rejoining of DNA single- and double-strand breaks in human white
blood cells exposed to ionizing radiation. Int J Radiat Biol.
73:649–660. 1998. View Article : Google Scholar : PubMed/NCBI
|
23
|
Końca K, Lankoff A, Banasik A, Lisowska H,
Kuszewski T, Góźdź S, Koza Z and Wojcik A: A cross-platform public
domain PC image-analysis program for the comet assay. Mutat Res.
534:15–20. 2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
El-Mihi KA, Kenawy HI, El-Karef A,
Elsherbiny NM and Eissa LA: Naringin attenuates
thioacetamide-induced liver fibrosis in rats through modulation of
the PI3K/Akt pathway. Life Sci. 187:50–57. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Jindal A, Mahesh R, Bhatt S and Pandey D:
Molecular modifications by regulating cAMP signaling and
oxidant-antioxidant defence mechanisms, produce antidepressant-like
effect: A possible mechanism of etazolate aftermaths of impact
accelerated traumatic brain injury in rat model. Neurochem Int.
111:3–11. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Smith TA, Kirkpatrick DR, Smith S, Smith
TK, Pearson T, Kailasam A, Herrmann KZ, Schubert J and Agrawal DK:
Radioprotective agents to prevent cellular damage due to ionizing
radiation. J Transl Med. 15:2322017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Verma P, Jahan S, Kim TH and Goyal PK:
Management of radiation injuries by panax ginseng extract. J
Ginseng Res. 35:261–271. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Jagetia GC and Baliga MS: Polyherbal
extract of septilin protects mice against whole body lethal dose of
gamma radiation. Phytother Res. 18:619–623. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Liu C, Liu J, Hao Y, Gu Y, Yang Z, Li H
and Li R: 6,7,3′,4′-Tetrahydroxyisoflavone improves the survival of
whole-body-irradiated mice via restoration of hematopoietic
function. Int J Radiat Biol. 93:793–802. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Li ZT, Wang LM, Yi LR, Jia C, Bai F, Peng
RJ, Yu ZY, Xiong GL, Xing S, Shan YJ, et al: Succinate ester
derivative of δ-tocopherol enhances the protective effects against
60Co γ-ray-induced hematopoietic injury through
granulocyte colony-stimulating factor induction in mice. Sci Rep.
7:403802017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Erexson GL, Kligerman AD, Bryant MF,
Sontag MR and Halperin EC: Induction of micronuclei by X-radiation
in human, mouse and rat peripheral blood lymphocytes. Mutat Res.
253:193–198. 1991. View Article : Google Scholar : PubMed/NCBI
|
32
|
King JC Jr, Cummings GE, Guo N, Trivedi L,
Readmond BX, Keane V, Feigelman S and de Waard R: A double-blind,
placebo-controlled, pilot study of bovine lactoferrin
supplementation in bottle-fed infants. J Pediatr Gastroenterol
Nutr. 44:245–251. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Koikawa N, Nagaoka I, Yamaguchi M, Hamano
H, Yamauchi K and Sawaki K: Preventive effect of lactoferrin intake
on anemia in female long distance runners. Biosci Biotechnol
Biochem. 72:931–935. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Yaribeygi H, Mohammadi MT and Sahebkar A:
Crocin potentiates antioxidant defense system and improves
oxidative damage in liver tissue in diabetic rats. Biomed
Pharmacother. 98:333–337. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Koc M, Taysi S, Buyukokuroglu Emin M and
Bakan N: The effect of melatonin against oxidative damage during
total-body irradiation in rats. Radiat Res. 160:251–255. 2003.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang B, Su Y, Ai G, Wang Y, Wang T and
Wang F: Involvement of peroxiredoxin I in protecting cells from
radiation-induced death. J Radiat Res. 46:305–312. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hoffmann H and Speit G: Assessment of DNA
damage in peripheral blood of heavy smokers with the comet assay
and the micronucleus test. Mutat Res. 581:105–114. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Li J, Wang Y, DU L, Xu C, Cao J, Wang Q,
Liu Q and Fan F: Nested PCR for mtDNA-4977-bp deletion and comet
assay for DNA damage-a combined method for radiosensitivity
evaluation of tumor cells. Oncol Lett. 7:1083–1087. 2014.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Olive PL, Banáth JP and Durand RE:
Heterogeneity in radiation-induced DNA damage and repair in tumor
and normal cells measured using the ‘comet’ assay. 1990. Radiat
Res. 178:AV35–AV42. 2012. View
Article : Google Scholar : PubMed/NCBI
|
40
|
Seidel C, Lautenschlager C, Dunst J and
Muller AC: Factors influencing heterogeneity of radiation-induced
DNA-damage measured by the alkaline comet assay. Radiat Oncol.
7:612012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Sirota NP and Kuznetsova EA: The comet
assay application in radiobiological investigations. Radiats Biol
Radioecol. 50:329–339. 2010.(In Russian). PubMed/NCBI
|